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Abstract

Researchers are deploying wireless sensor networks
more than ever before. These networks comprise a large
number of sensors integrated with small, low-power,
wireless transceivers. They are often deployed in harsh,
volatile locations, which increases their rate of packet
loss and device failure. Using diagnostic metrics to
debug wireless sensor networks allows for transmitting
only a small amount of extra information, while still
enabling performance analyses to be performed.

We present Corl8, a system for analyzing diagnostic
traces in wireless sensor networks. Our approach relies
on diagnostic data that is periodically transmitted
to a network sink as part of the standard sensor
payload. Corl8 provides an interactive environment
for exploring correlated changes in diagnostic measures
within an individual node or on a batch basis to flag
interesting correlations. The system’s flexibility makes
it applicable for use in any wireless sensor network
that transmits diagnostic information. The analysis
methods are user-configurable, but we suggest settings
and analyze their performance with data from five real-
world deployments.

keywords: wireless sensor networks, debugging, diag-
nostics, correlation

1 Introduction

Researchers use wireless sensor networks to monitor
the physical world, and to gather information that
would otherwise be unavailable. These networks use
a large number of sensors to gather data, often in harsh
environments, over a large area. Each node is equipped
with a small, low-power, wireless radio used to transmit
data for processing and storage. These networks can
be applied in a wide range of applications, including
habitat monitoring [16], microclimate monitoring [17],
sow monitoring [3], pipeline monitoring [9], target
detection [18], coal mine structural monitoring [10],

early warning systems for floods [2], and hospital
patient monitoring [4]. Fault tolerance is critical in
these networks because they are failure-prone, resulting
from link quality variation, packet corruption, and
wireless congestion. These factors are often exacerbated
due to multi-hop communication between nodes and
sinks [11]. The devices themselves are also subject to
failure, stemming from the harsh environments in which
they are deployed.

Sensor nodes present unique requirements and hard-
ware constraints. They must be able to endure the
environment, require minimal maintenance, and func-
tion with limited power in confined spaces. Equally
important, they must be able to react to and recover
from failures, even though they function with less stor-
age and computational capability than typical desktop
computers or even smartphones. These limitations
present challenges for debugging failures because there
is insufficient space on a node to store a full debugging
log, such as those commonly used on desktop comput-
ers. Further, energy limitations prohibit transmission
of a complete log to a central node.

In light of these limitations, it is more common for
sensing systems to report a variety of simple diagnostic
measures as part of their standard operation. These
measures are analyzed when nodes do not report as
expected. However, it is often difficult to understand
what these numbers mean individually. Understanding
the relationships among the measures is critical. For
example, a large number of TCP disconnect errors could
indicate any number of problems with the initiating
node’s hardware or software, the target system’s hard-
ware or software, or external environmental factors.
Understanding that the TCP disconnect errors occur
in step with low signal strength reduces the exploration
space considerably.

To this end, we present an integrated system to
support the analysis of diagnostic data produced by
wireless sensor nodes. The system generates user-
friendly graphs of diagnostic data and supports basic
mining of error rate correlations, resulting in graphs



of highly correlated data. The analysis mechanism is
configurable, allowing users to exclude repeated data
points (e.g., no diagnostic errors) to prevent inflation
of the correlation statistic. The user may also request
that the data be analyzed in any number of equal
width segments to support the discovery of error rates
that may only be correlated during certain “data
windows”. We apply this system to five deployed
wireless sensor networks that are part of the Intelligent
River R© project [7] and evaluate the system in terms of
its ability to assist in reasoning about system errors.

The remainder of the paper is organized as follows.
Section 2 surveys some of the most closely related
work in debugging wireless sensor network applications.
Section 3 presents the design and implementation of
Corl8. Section 4 presents several use-case scenarios.
Section 5 presents results identified using Corl8 and
discusses its effectiveness. Finally, Section 6 presents
a summary of our work and conclusions.

2 Related Work

Systems approaches to debugging wireless sensor
networks have received considerable attention in the
literature. Here we consider some of the most relevant
related work.

Ramanathan et al. [13, 14] present Sympathy, which
is designed to be deployed in tree-based, multi-hop
topologies. It assigns each failure a localized source
(i.e. root cause), indicating where the failure most
likely originated and where the developer should begin
when debugging the problem. These sources can be
self, path, or sink. Sympathy works by monitoring
network traffic and extracting flow and node metrics
from messages received at the sink. This information
is used to compute other diagnostic support data,
such as routing tables and neighbor lists. Sympathy
introduces overhead less than or equal to 31% of
data traffic. Its purpose is to identify the node
causing packet or data loss in a network. Our system
focuses on isolating failures to specific components
of a sensor node by identifying the interactions of
those components through correlation of diagnostic
measures. Our system’s flexibility allows it to analyze
any diagnostic measures periodically transmitted by a
sensor network.

Khan et al. [8] present Dustminer, a tool for identi-
fying bugs associated with complex component inter-
actions in networked sensing applications. These bugs
are not localized to one faulty component, but occur
due to unexpected interactions. The interactions may
not be repeatable, making it difficult to reconstruct the
anomalous situations and localize the bugs. Dustminer

examines sequences of events across nodes to identify
the root cause. Since events at devices that have
not yet communicated are logically independent and
could have occurred in any order, the system uses non-
determinism to help build sufficiently diverse training
examples to recognize relevant correlations for faulty
system behaviors. A front-end framework collects
event logs; the back-end processes these logs using
Apriori [1] to mine for frequent discriminative patterns.
The success of this approach depends on logging the
appropriate events. In their tests, the logs took 100-
400 KB of flash memory and were not transmitted
directly to the server. Corl8 relies on a count of events,
rather than full sequence information. This improves
efficiency, but comes at a cost; event causality is lost.

Girod et al. [5] present EmStar, a software envi-
ronment for developing and deploying wireless sensor
networks. EmStar favors ease of use and modularity
over efficiency; it must be run on a multi-process
“microserver” node [6], not a resource-constrained de-
vice. The EmView component for network visualization
shows which network nodes have failed or are function-
ing properly. EmView must explicitly request updates
from individual nodes, which could be disadvantageous
in providing regular updates since it would require
many data requests. While the approach is more
efficient when the system is not being monitored, if
the system crashes in such a state, there would be
no data to help diagnose the cause of the failure.
While robust and modular, it is not applicable to
systems with limited on-board memory or processor
resources. It relies on stored logs and concurrently
running processes to be able to report failures after
they have occurred. Our system focuses on resource-
constrained devices, providing enough information prior
to failure or degradation that the cause can be inferred
by the programmer.

3 Design

In this section, we present the design and implemen-
tation of the Corl8 analysis system. It is designed
to focus on “interesting” data, which is automatically
presented as a set of scatterplots that depict how the
various diagnostic measures in question vary. The sys-
tem can be used to analyze a single node or all network
nodes. First, we present an overview of the system,
then describe each of the individual components.

3.1 Overview

An overview of the flow of diagnostic data through the
Corl8 system is shown in Figure 1. Data originates at
the Sensor Nodes and flows into the Sensor Diagnostic
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Figure 1: Diagnostic Data Flow

Log Database (in whatever format is used by the target
network1). Next, a Python Preprocessing Script parses
the raw data into per minute, per sensor attempt, and
per transmission attempt metrics to allow analysis to
be done based on other influencing factors, such as
transmission attempts for radio board diagnostics or
processing time. As the data is processed, the Python
script inserts the results into a MySQL Database. The
data may also be preprocessed to reduce the number of
points, or to round the measures, allowing the system
to flag more points as duplicates.

The central component of our framework is the R
Analyzer Function, which reads information from the
MySQL Database and accepts User-specified Parame-
ters. The function parameters tailor various aspects of
the data analysis and control how the resulting graph
sets should be output. The output for each unique
combination of (i) node, (ii) independent diagnostic
measure, and (iii) dependent diagnostic measure is a
graph set. Each graph set contains one or more graphs.
The first graph represents the entire data set. If the
parameters are configured such that the data is also
analyzed based on divisions (equal width segments), a
graph will be created for each division. The graph set
is then saved as a single image. The final result of the
function is a collection of graph sets.

We discuss the details of representative parameters in
Section 3.4. The R Analyzer Function can also accept
input from the Web Interface. In this case, the graph
set resulting from the Analyzer is sent back to the web
interface for the user to view. The web interface is also

1Our target system uses a MongoDB database.

Name Type

id int(11) - Primary Key
diagnostic varchar(100)
device varchar(100)
pmin decimal(18,9)
pradio decimal(18,9)
psample decimal(18,9)
raw decimal(18,9)
time datetime

Table 1: MySQL Table Structure

written in R and is hosted using Shiny Server [15]. The
interface supports many of the same parameters, but
the inputs are specified in an interactive manner.

3.2 MySQL Database

The database is designed to import diagnostic
measures from any number of nodes, and from any
number of diagnostic categories. The structure is shown
in Table 1; it contains eight columns. The id column is
the (generated) primary key. The diagnostic column
captures the name of a diagnostic measure. In our
sensor system, we use names such as appDiagnostics-
sampleAttempts and gm862Diagnostics-wakeErrors.
The device column records the name of the device
being observed (e.g., srb 1, srb 2, bar 1, ...). The data
columns (pmin, pradio, psample, raw) contain the
values of the diagnostic measures in several formats:
count per minute, count per radio attempt, count per
sample attempt, and the raw count reported in the
diagnostic message. The number of data columns can
vary among applications. In some cases, it may not
make sense to use per minute, transmission, or sample
error rates; the raw value may be more appropriate.
For example, signal strength and battery voltage
will only make sense when interpreted using the raw
values. A user might also wish to create a data column
containing errors per event detected. The time column
records the data timestamp.

3.3 Populating MySQL

We assume sensor nodes send cumulative diagnostics
since the last reboot. Given that the counts are set to
zero after each reboot, and then increase monotonically,
the system detects reboots. It also excludes counts from
prior reports before dividing the diagnostic measures
in the current report to compute counts per minute,
per sensor reading attempt, per transmission attempt,
etc. The system inserts one row for each diagnostic
reported by each node. After all reports for a device
have been processed, the system advances to the next
device. When processing is complete, the database



Parameter Description

device The device to consider. If all,
all devices will be used.

DB Parameters dbName, dbHost, dbUser,
dbPassword, dbTable

diagnostics The vector of diagnostics to
analyze, or NULL to use all.

diagCol1, The column to use for the first/
diagCol2 second diagnostic parameter.
threshold The minimum number of points

required to run the analysis.
round The number of decimal places,

or NULL to use data as-is.
maxDuplicates The maximum number of

duplicates of a single point
allowed in the test.

minRS The minimum r-squared value
required to consider a graph
as correlated.

minDate, The start/end date in the form
maxDate (YYYY-MM-DD HH:MM:SS).
divisions Number of segments to divide

the data into.
divisionThreshold The minimum number of points

in a division to run the analysis.
requireSubCor Require a division be correlated

to output the graph set.
Image Output folder, nCol, graphWidth,
Parameters graphHeight

Table 2: Analyzer Parameters

contains all the diagnostic data reported by the sensor
network.

3.4 Analyzer Function

The Analyzer Function is responsible for determining
which data to display to the user for further analysis.
It is written in R [12] and controlled by the parameters
provided by the user. It acts on the processed data
in the MySQL table. A change in the parameters
can make a significant difference in the false posi-
tive/negative rate, as well as the volume of data output
for further analysis. As a result, it is important to
understand the various parameters. A subset of the
available parameters is summarized in Table 2.

4 Use-case Scenarios

We now present two use-cases to demonstrate the
utility of Corl8. The first illustrates the use of batch-
based analysis to discover possible errors. The second
illustrates Corl8’s ability to support the investigation

of potential flaws using the web interface.

4.1 Batch Analysis

Corl8’s batch analysis mode allows users to ana-
lyze all of the available diagnostic data to search for
correlated error rates. Running the system in this
manner results in the production of a collection of graph
set images requiring further analysis by the user. In
our example, we use data from the Intelligent River R©

project. In total, we use over 3 million diagnostic
measures from 36 nodes.

To remove duplicate data points, we use the default
rounding setting to round our data to the nearest
hundredth. The running time of Corl8 in batch mode
was approximately 9 hours. The machine was equipped
with 8 GB of RAM and an Intel Core2 Quad CPU
running at 2.66 GHz. However, because Corl8 uses
a single thread, it is unable to take advantage of the
4 cores. By using multiple processes and instructing
each instance of Corl8 to process a single device, this
time could be significantly reduced. After the analysis
completed, Corl8 flagged approximately 590 graph sets
for further investigation.

Some of these graphs show expected correlations
(e.g., up-time versus sampling attempts, see Section 5).
Other graphs represent sources of concern (see Sec-
tion 5). The default analysis parameters met our goal
of providing a reasonable number of useful graphs as
output. However, one common change is to increase
or decrease the minimum R-squared value used to
identify a correlated graph, which can further balance
the number of graph sets with the false positive rate.

4.2 Interactive Analysis

Corl8’s interactive analysis mode allows for faster
results because the system produces only one graph set
at a time in response to a user’s request. If a specific
interaction is suspected, developers can quickly view
a graph of the diagnostic measures in question. They
can then modify the search parameters as needed to
investigate whether the issue started or stopped at a
specific time, and to see if viewing the data based on per
minute, per radio attempt, or per sample attempt yields
better information. For example, a developer might
want to compare log errors per sample attempt versus
log errors per radio attempt to see if one is more related
than the other. In general, the web interface allows
user’s to interactively control every salient parameter of
the Analyzer Function. Adjusting values interactively
provides a quick way to increase or decrease the various
thresholds and allowances, and to immediately see how
a specific graph is affected. This helps developers



determine the optimal settings to use when running
batch analysis.

5 Results

Using Corl8 to analyze our Intelligent River R© de-
ployments throughout South Carolina, we were able to
identify several interesting data trends, which helped
us to understand performance issues. In the following
sections, we present three of the most interesting
results.

The graph set shown in Figure 2 represents diagnostic
data from a node deployed at the Baruch Institute in
Georgetown, SC. It shows that TCP disconnect errors
from our cellular board are correlated with escape errors
from the same board. This correlation suggests an error
in our sensor nodes. As background, to send data to the
Intelligent River R© server, the cellular modem must first
create a connection to the server. After the connection
is established, the modem automatically switches from
“command mode” to “data mode.” In command mode,
each byte sent to the modem is interpreted as a
command. In data mode, the bytes are instead relayed
over the connection, which sends the data to the server.
Once the connection is established, and the node has
sent its data, it needs to disconnect and shutdown.
To complete this task, it must first escape back into
command mode. This correlation data points to an
issue where the cellular modem emits a connection
response, but the connection is not fully established.
As a result, the connection is immediately dropped,
causing the device to fall back into command mode.
From there, the escape command fails because the
cellular modem is already in command mode, and the
disconnect command also fails because it is no longer
connected. This pattern of failure increases the up-time
of the cellular chip, increasing energy consumption, and
decreasing device longevity. This correlation pattern
helps to point to this error chain.

The graph set in Figure 3 shows the number of sample
attempts performed versus the up-time of the sampling
board in a device used at a conference demonstration.
This graph set shows that the node was working
properly. Looking closely at the graph, one outlier
shows where 2 sampling attempts were made, and the
ADS sampling board was up for 8.25 seconds, instead
of the expected 8 seconds. If there were more outliers in
the data set, it would be a cause for concern, but since
there is only one outlier, it does not warrant concern.

While monitoring the nodes in an on-campus deploy-
ment, we noticed that two nodes were occasionally un-
responsive for long periods. Looking at the application
diagnostics, we observed that a large number of sample
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Figure 2: TCP Disconnect Errors vs Escape Errors
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Figure 3: Sample Attempts vs Sampling Up-time
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Figure 4: Sample Failures vs SDI-12 Conversion Errors

failures were occurring during these time periods. Since
these sample failures were unexpected, we employed
Corl8 to determine the cause of the failures. The
observed failures began on February 24, 2014, so we ran
a batch test using a start date (minDate) of 2014-02-24
00:00:00. We also reduced the threshold, the number
of points required to analyze a dataset, to 10, and
the division threshold, the number of points required
in any segment of the data to be analyzed, to 3
because we had only a few reports showing these issues.
Corl8 automatically flagged three graphs for one of the
nodes. These graphs showed that sample failures were
correlated to radio attempts, conversion errors, and up-
time on the transmission board.

We were able to eliminate two of the graphs (radio
attempts and up-time) because they showed that when
a large number of sample failures occurred, the number
of radio attempts (and thus up-time) was reduced.
This is an expected correlation since the nodes are
configured to transmit only when they have three
successful samples. The conversion errors from the SDI-

0.0

0.2

0.4

0.6

0.00 0.05 0.10 0.15 0.20
appDiagnostics−sampleFailures

sd
i1

2D
ia

gn
os

tic
s−

co
nv

er
si

on
E

rr
or

s

Cases:  56  y = 0.014 + 2.4 ⋅ x,  r2 = 0.666

 All Data

−0.50

−0.25

0.00

0.25

0.50

0.00 0.01 0.02 0.03 0.04 0.05
appDiagnostics−sampleFailures

sd
i1

2D
ia

gn
os

tic
s−

co
nv

er
si

on
E

rr
or

s

Cases:  10  y = 0 + NA ⋅ x,  r2 = 0

 Data Range: 0 to 0.05

0.0

0.1

0.2

0.05 0.06 0.07 0.08 0.09 0.10
appDiagnostics−sampleFailures

sd
i1

2D
ia

gn
os

tic
s−

co
nv

er
si

on
E

rr
or

s

Cases:  24  y = −0.094 + 4 ⋅ x,  r2 = 0.524

 Data Range: 0.05 to 0.1

0.2

0.3

0.4

0.10 0.11 0.12 0.13 0.14 0.15
appDiagnostics−sampleFailures

sd
i1

2D
ia

gn
os

tic
s−

co
nv

er
si

on
E

rr
or

s

Cases:  15  y = 0.021 + 2.7 ⋅ x,  r2 = 0.738

 Data Range: 0.1 to 0.15

−0.25

0.00

0.25

0.50

0.15 0.16 0.17 0.18 0.19 0.20
appDiagnostics−sampleFailures

sd
i1

2D
ia

gn
os

tic
s−

co
nv

er
si

on
E

rr
or

s
Cases:  7  y = 1.4 + −6.1 ⋅ x,  r2 = 0.216

 Data Range: 0.15 to 0.2

 hc_3

Figure 5: Sample Failures vs SDI-12 Conversion Errors

12 sampling board provided more information. The
associated graph set produced by Corl8 is shown in
Figure 4.

It was also interesting that Corl8 flagged only two
graphs for another node in the same deployment — ra-
dio attempts and up-time on the transmission board.
Thus, we turned to the web interface to explore sample
failures versus conversion errors. The graph set is
shown in Figure 5. From this graph, we can observe
that the general trend is still present, but the presence
of several outliers caused Corl8 to not automatically
flag the data set. The underlying cause of this error
appears to be hardware damage.

We were able to identify errors through Corl8’s
batch mode, and further investigated the errors using
the interactive mode. The time spent investigating
the graphs was only a few hours to obtain useful
information for addressing errors and verifying that
other components were working as expected. Corl8
can significantly decrease the time required to debug



wireless sensor network systems that report diagnostic
measures.

6 Conclusion

Researchers are deploying wireless sensor networks
more than ever before. Large numbers of sensors
integrated with small, low-power, wireless transceivers
compose these networks. The harsh, volatile locations
in which these devices are deployed increase their failure
rate.

Corl8 helps developers determine causes of failure
by identifying correlated diagnostic measures. Since
hardware resources such as memory and power are often
scarce, our work seeks to minimally impact the amount
of data that must be stored and transmitted. We also
seek to avoid add-in network protocols, which consume
additional resources and may be difficult to add to
existing wireless sensor networks. The flexibility of our
system allows researchers with sensor networks already
collecting some amount of diagnostic data to apply our
system with no changes to their network.

Corl8 allows for batch mode analysis to help identify
unknown faults in a system, and interactive analysis
for investigating suspected faults. In our tests, Corl8
successfully found the correlated diagnostic measures
to explain why nodes were seeing an unusually large
number of cellular disconnect errors and assisted an
exploration into why some nodes were experiencing an
increased number of sampling errors. We believe Corl8
will help researchers more quickly and easily diagnose
performance anomalies.

It is our hope that the reach of the Corl8 system
can be expanded to include observation data. We
believe this will lead to more robust diagnostic analyses,
particularly when environmental factors are suspected
as a potential cause for failure.
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