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Abstract

Due to an increasing demand to monitor the physical world, researchers are deploying wire-

less sensor networks more than ever before. These networks comprise a large number of sensors

integrated with small, low-power wireless transceivers used to transmit data to a central processing

and storage location. These devices are often deployed in harsh, volatile locations, which increases

their failure rate and decreases the rate at which packets can be successfully transmitted.

Existing sensor debugging tools, such as Sympathy and EmStar, rely on add-in network

protocols to report status information, and to collectively diagnose network problems. Some proto-

cols rely on a central node to initiate the diagnosis sequence. These methods can congest network

channels and consume scarce resources, including battery power.

In this thesis, we present Corl8, a system for analyzing diagnostic traces in wireless sensor

networks. Our method relies on diagnostic data that is periodically transmitted to a network sink as

a part of the standard sensor payload to enable fault diagnosis. Corl8 does not require any specific

data to be present in the system, making it flexible. Our system provides an interactive environment

for exploring correlated changes across different diagnostic measures within an individual node. It

also supports processing on a batch level to automatically flag interesting correlations. The sys-

tem’s flexibility makes it applicable for use in any wireless sensor network that transmits diagnostic

measures. The analysis methods are user-configurable, but we suggest settings and analyze their

performance. For our evaluation, we use data from five real-world deployments from the Intelligent

River R© project consisting of 36 sensor nodes.
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Chapter 1

Introduction

Researchers use wireless sensor networks to monitor the physical world and to gather in-

formation that would otherwise be unavailable. These networks use a large number of sensors to

gather data, often in harsh environments over a large area. Each node is equipped with a small,

low-power wireless device used to transmit data to a central processing and storage location. These

networks can be applied in a wide range of domains, such as habitat monitoring [35], finding nearby

friends [31], microclimate monitoring [38], sow monitoring [5], pipeline monitoring [12], target de-

tection [39], coal mine structural monitoring [14], early warnings for floods [4], and hospital patient

monitoring [6]. Fault tolerance is critical in sensor networks because they are failure-prone in terms

of data delivery resulting from link quality, packet corruption, and wireless congestion. These factors

are often exacerbated due to multi-hop communication between nodes and the sink [18].

The nodes in a wireless sensor network have a unique set of requirements and hardware

constraints. They must be able to endure the environment, require minimal maintenance, and

function with little power in small spaces. Equally important, they must be able to react to and

recover from failures, even though they function with much smaller storage and computational

abilities than a desktop computer or even a smartphone. These limitations present challenges for

debugging failures because there is insufficient space on a node to store a full debugging log, such as

those commonly used on desktop computers. Further, energy limitations prohibit transmission of a

complete log to a central node.
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1.1 Motivation

Many solutions have emerged to address the challenge of debugging wireless sensor networks.

Tools such as Sympathy [23] and EmStar [8] rely on add-in network protocols to report status

information. EmView, a component of EmStar, also relies on a central node to initiate the diagnosis

sequence. These methods can congest network channels and consume extra energy to transmit the

data.

Our sensing system includes built-in reporting of a variety of diagnostic measures. These

measures are typical analyzed manually when nodes are not reporting as expected. However, it is

difficult to understand what these numbers mean without tools to interpret them. As preliminary

work for this, we converted the raw diagnostic measures into graphs of rates per minute, per sensor

reading attempt, and per transmission attempt. For example, errors having to do with wireless

transmission were best represented based on transmission attempts, and errors associated with sensor

readings were best based on reading attempts. Our programmers and deployment technicians were

then able to use the associated graphs to quickly track deployment status.

For phase one of the work presented here, we apply standard statistical techniques to identify

correlated error rates. We analyze error rates for multiple types of errors on the same node to attempt

to identify failure patterns. For example, do both SDI-12 and 1-Wire have collection error rates that

increase at the same time, suggesting a possible clock rate issue? In this phase of our project, we

produced a system, Corl8, which is able to analyze multiple nodes in combination with any number

of diagnostic measures.

In the second phase of the project, we created a web portal which allows researchers who

are less comfortable in a command line setting to adjust settings and view specific graphs on an

interactive basis. This assists researchers in diagnosing errors by allowing them to quickly view a

specific error plot and to change the time span under consideration with only a few clicks. Researchers

planning to use the command line tool can use the web portal to help determine the settings they

would like to use for the parameters and to familiarize themselves with the functionality of each

setting.
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1.2 Problem Statement

Programmers must be able to localize and correct errors in wireless sensor networks. De-

bugging tools come with a price of resource utilization that must be minimized. Simply transmitting

diagnostic measures gives the programmer some knowledge of where the problem may be but pro-

vides little information on how they are related. Understanding the relationships among diagnostic

measures allows programmers to localize problems more quickly. For example, a large number of

TCP disconnect errors could indicate any number of problems with the initiating node’s hardware or

software, the target system’s hardware or software, or external environmental factors, but knowing

that the TCP disconnect errors occur in correlation with low signal strength reduces the problem to

environmental issues.

1.3 Solution Approach

To improve the comprehension of root cause errors, we begin by designing a system which

graphs “count” measures from any set of diagnostic data. The counts can be viewed as raw data

(an increasing count which is reset to zero each time the node is restarted), counts per minute,

counts per sample attempt (e.g., for sampling errors), and counts per transmission attempt (e.g.,

for wireless errors). The system supports any number of error categories and names, as appropriate

to specific deployments.

To provide automated diagnostic assistance, we extend the system to use R to automatically

correlate error rates based on a number of user configurable settings. Using the command-line batch

interface, Corl8 generates and saves a graph set for each pair-wise error pattern that is statistically

correlated. Each such graph set contains a graph of all the relevant data and a graph for each

requested sub-division of the data, with the associated best fit based on linear regression. The

developer may want access to a specific graph to test a theory or to further investigate one of the

graphs generated in batch mode, so Corl8 also provides access via an interactive web interface which

allows developers to interactively view the various graphs.

In order to allow Corl8 to be integrated with any sensor network, it reads the diagnostic

data out of a specifically formatted MySQL table. A simple conversion script can feed in data from

the target sensor network without having to modify Corl8. In our approach, we run a preprocessing

step to move the data from MongoDB into MySQL using a Python script. During this step, we
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compute the per minute, per sensor attempt, and per transmission attempt data and place each

diagnostic measure into its own row. Computing the various measures during preprocessing saves

resources at the node level and when Corl8 processes the data.

1.4 Contributions

The contributions of this thesis are as follows: We present an integrated system which

supports the analysis of diagnostic data produced by wireless sensor nodes. This system generates

user-friendly graphs of diagnostic data and supports the basic mining for error rate correlations,

resulting in graphs of highly correlated data likely to be causally related. The analysis allows

users to exclude repeated data points (e.g., no errors on either diagnostic) to prevent inflation of

the correlation statistic. The user may also request that the data be analyzed in any number of

equal width segments to support the discovery of error rates that may only be correlated during

certain periods. We apply this system to five deployed wireless sensor networks that are part of the

Intelligent River R© project. Finally, we evaluate the system in terms of its ability to identify errors

in the code of the system.

1.5 Thesis Organization

Chapter 2 surveys some of the most closely related work in debugging wireless sensor network

applications. Chapter 3 provides a brief overview of R, which we use to implement our system.

Chapter 4 presents the design and implementation of our system. Chapter 5 discusses various use-

case scenarios for the system. Chapter 6 surveys results identified by the system and evaluates its

effectiveness. Finally, Chapter 7 presents a summary of our work and conclusions.
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Chapter 2

Related Work

Paradis and Han borrow from the distributed systems community [37], defining fault isola-

tion in wireless sensor networks as correlating “different types of fault indications (alarms) received

from the network, and propose various fault hypotheses” [18]. We consider prior work focused on

fault hypotheses (Section 2.1), pattern detection (Section 2.2), and tracing and visualization (Section

2.3).

2.1 Fault Hypotheses

2.1.1 Sympathy

Sympathy [23, 24] is designed to be deployed in tree-based, multi-hop topologies. It assigns

each failure a localized source (root cause). This source indicates where the failure most likely

originated and is where the developer should begin when debugging the problem. These sources

can be self, path, or sink. Self denotes that the failure likely originated from the node itself (e.g.,

crash, reboot, local bug, or connectivity issue). Path denotes that the failure is likely a routing issue

between the node and the sink; Sympathy will identify the node on the path that is likely causing

the issue. Finally, sink indicates that the whole network appears to be failing.

Sympathy works by monitoring network traffic and extracting flow and node metrics from

messages received at the sink. Flow metrics for transmitted and received packets are collected at

each node, along with the node (or sink) the packets were transmitted to/from. Node metrics include
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uptime, and good/bad packet counts. Sympathy uses this information to compute its own diagnostic

support data, such as the routing table and neighbor list. The transmit period of these metrics can

be adjusted to control network traffic.

Sympathy introduces overhead less than or equal to 31% of data traffic. Ideally, we would

like the overhead to be as small as possible, but we would also like to avoid modifying existing

deployments. Our system’s flexibility allows it to analyze any diagnostic measures that developers

may already be periodically transmitting in their diagnostic process. Sympathy’s purpose is to

identify the node causing packet or data loss in the network. Our system, however, focuses on

isolating failures to specific components of a sensor node by identifying the interactions of those

components through correlation of diagnostic measures.

2.1.2 Fault Management in Event-Driven Wireless Sensor Networks

Ruiz et al. [28] describe a system for using MANNA [27] to detect faults in event-driven

wireless sensor networks. MANNA is a management architecture that enables information collection

from sensor nodes and provides a number of associated services, including coverage area maintenance

and failure detection. Ruiz et al. use a simulated environment to decide whether individual nodes

have failed. The nodes in the simulation are event-driven, meaning they only report when an event

is detected. This means that the monitoring system must introduce communication overhead to

detect nodes that are still alive but have not had any events to report. The diagnostic information is

used to develop a visualization of node failures. Similar to our work, Ruiz et al. collect information

across sensor nodes to assist in finding faults, but their system indicates only whether individual

nodes have stopped responding. Our data includes information on a variety of sensor, network,

and system diagnostic measures. MANNA itself is also limited, as it requires that users implement

business rules over the collected data. Our system relies on the collected data to uncover interactions

that may have been unexpected in order to help developers quickly debug and tune their systems.

2.1.3 Passive Diagnosis for Wireless Sensor Networks

Liu et al. [15] report a network diagnosis system, PAD, which uses a packet marking scheme

to lower the network overhead associated with discovering the network topology. The packet marking

scheme marks normal communication packets to capture how they traveled through the network,
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which reveals dependencies. Using a hierarchical inference model, PAD’s inference engine enables

reasoning about the root cause of faults, even with incomplete or suspicious inputs. In field tests,

PAD consumes less than 10% of total network traffic and achieves a 90% failure detection rate, with

approximately 80% accuracy in terms of correctly identifying the cause of failure.

While PAD may be useful in determining whether an individual node caused a failure,

whether a group of nodes has gone down, or the system as a whole is suffering from excessive traffic

reroutes, it is not well-suited for identifying application bugs or performance anomalies since it only

collects data on network dependencies. Our system collects data across many different devices and

software categories to allow for more extensive error analysis.

2.2 Pattern Detection

2.2.1 Lessons from a Sensor Network Expedition

Szewczyk et al. [36] evaluate a four-month-long deployment of a habitat monitoring system

off the coast of Maine. After the deployment, they used the collected statistics to analyze packet

loss, node level crashes, and power management. They were further able to use sensor data and

mote clock skew (compared to the base station), combined with node failure information to analyze

states that frequently led to mote crashes. In their tests, this detection method had very low false

positive rates.

Their results shed light on how data can be used to predict failures, but since only one

deployment was used, it is unknown how well their rules generalize. Our work seeks to expand upon

this, such that data analysis can be applied in a simple fashion to any wireless sensor network to

expose correlated error rates.

2.2.2 Dustminer

Khan et al. [11] detail Dustminer, a tool for identifying bugs associated with complex com-

ponent interactions in networked sensing applications. These bugs are not localized to one faulty

component, but occur due to unexpected interactions which may not be repeatable, making it diffi-

cult to reconstruct the anomalous situations and localize the bugs. Dustminer examines sequences

of events across nodes to identify the root cause. Since events at devices that have not yet commu-
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nicated are independent and could have happened in any order, the system uses non-determinism to

help build sufficiently diverse behavior examples to train the system to recognize relevant correla-

tions for “bad” system behavior. A front-end framework collects event logs; the back-end processes

these logs using Apriori [1] to mine for frequent discriminative patterns using minSup1 greater than

1. A second phase splits the logs into fixed-width segments. The number of discriminative patterns

in a segment becomes the rank of that segment and consecutive segments containing discriminative

patterns are combined into one larger segment. After this analysis, the K -highest ranking segments

are analyzed for frequent patterns using minSup1 of 1. This scheme helps to reduce the search space

and makes it feasible to mine for longer, frequent patterns.

Dustminer can help identify event patterns leading to error states. The success of this

method of course depends on logging the appropriate events. In their tests, the logs took 100-400

Kb of flash memory space and were not transmitted directly to the server. Unfortunately, they do

not specify how long the tests took to run, which makes it difficult to determine the overall efficiency

impact. In our study, we are able to reduce the amount of data transmitted by only transmitting a

count of events, rather than sequence information. This improves efficiency, but comes at the cost

of loss of causality; i.e., it is unknown which event came first. Our approach reduces the resources

needed to transmit the diagnostic data and provides an integrated system for viewing and analyzing

the results.

2.3 Tracing and Visualization

2.3.1 EmStar

EmStar [8] is a software environment for developing and deploying wireless sensor networks,

composed of libraries that implement message-passing IPC primitives; tools for simulation, emula-

tion, and visualization of real and simulated systems; and services that support networking, sensing,

and time synchronization. EmStar favors ease of use and modularity over efficiency. Though the

authors note that efficiency has not been a barrier in their current projects, it could be a problem in

cases where efficiency is a top priority. The EmView system for network visualization must explicitly

request updates from individual nodes, which could be a disadvantage in providing regular updates

since it would require many data requests. While the approach is more efficient when the system is

1The minimum number of times the pattern must appear in the database to be considered frequent.
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not being monitored, if the system crashes in such a state, there would be no data to help diagnose

the cause of the failure.

The robustness of EmStar requires that it be run on a multi-process “microserver” style

node [9]. It is not intended to be used on resource-constrained devices. This allows different processes

to be isolated, and to tolerate process faults while continuing to operate (perhaps in a degraded

state). EmStar also defaults to memory-based logs persisted to flash in the event of a critical failure

or user request. This again assumes that the device has a relatively large amount of memory available

for use.

The EmStar platform, while robust and modular, is not applicable to systems with limited

on-board memory or processor resources. It relies on stored logs and concurrently running processes

to be able to report failures after they have occurred. Our system focuses on providing enough

information prior to failure or system degradation that the cause of failure can be inferred by the

programmer.

2.3.2 Clairvoyant

Yang et al. [41] present Clairvoyant, a source-level debugger for wireless embedded networks.

It allows developers to execute debugging commands, such as break, step, watch, and others

specific to wireless sensor networks within a live environment. Other commands include backtrace

to list all frames on the stack, frame [n] to select a frame, and info frame to detail a particular

frame. The user selects a specific target and detaches when debugging is complete to allow the device

to resume normal execution. The user can use network-level stop, continue, detach, and reset

commands to issue the same command to all nodes.

While useful, basic Clairvoyant requires 875 bytes of data memory, and 31,360 bytes of

program memory, which is nearly a quarter of the memory available on a Mica2 mote. Calling

break, watch, cond, and log commands each add more memory requirements. The flash-based

context switching required by watch and step could also quickly exhaust the number of flash

memory writes possible on a mote. Our system requires no context switching or mote code changes,

assuming the target system is already transmitting some amount of diagnostic data, which allows

us to introduce only minimal overhead.
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2.3.3 TOSSIM

TOSSIM is a system for accurate and scalable simulation of TinyOS-based wireless sensor

networks [13]. TOSSIM achieves simplicity and efficiency by using a probabilistic bit error model,

which enables detailed and scalable sensor network simulation. Included as part of TOSSIM is

TinyViz, a graphical user interface for visualization, control, and analysis of TOSSIM simulations.

TinyViz uses plugins to add functionality, including plugins for network traffic, mote state control,

debugging, and power monitoring [29].

TOSSIM provides several other simulation control plugins, but these have been omitted

in this discussion since they are not pertinent to our research. As a debugging platform, TOSSIM

provides a wide range of tools in its graphical user interface (TinyViz). These tools allow visualization

of data, much like the preliminary work for our project, but they are only applicable for simulated

systems. TinyViz is not built to allow use in a live system. It also does not provide any details on

relationships between errors, which would help programmers to more quickly localize the root cause

of a fault.

2.3.4 Lightweight Tracing

Sundaram et al. [32, 33, 34] present a lightweight code tracing algorithm to assist in wireless

sensor network debugging. Their system uses an algorithm by Ball and Larus [3] which represents

the particular path taken through a procedure with an integer between zero and the total number of

possible paths less one. Using this algorithm, each path taken within a procedure can be identified.

In order to reduce the number of possible paths, loops are treated as separate procedures. For

example, a program with two if-statements followed by a loop would be treated as two procedures,

one for the if-statements and one for the loop. Representing the flow for an entire program is

done using numbers that represent each procedure, and the numbers representing the paths taken

through the procedures. In representing a system, procedures may be interrupted by the system,

which means a number of procedures may start before any of them complete. As a result, the system

records procedure start and end markers. In the case of multiple threads, each procedure is also

labeled with a session identifier.

Sundaram et al. compress the trace records based on procedures that ran uninterrupted,

repeated sequences of procedures, and repeated paths within a procedure (e.g., paths taken within
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loops). Using their trace system increases the code size by a variable amount, depending on the

number of procedures present. In their examples, the overhead ranges between 5KB to 15KB, which

could be a several hundred percent increase, or as low as a 1 or 2 percent increase, depending on

the original program size. The compressed logs require 344b to 93200b for a 30-minute run. The

size could be reduced by tracing only key functions.

The trace results must be viewed by a programmer to infer the root causes of faults. If

further information is needed, the programmer may need to use a heavier-weight tracing tool that

captures more data, such as the exact function inputs. The system presented by Sundaram et al.

provides an efficient way to log the program actions of individual nodes but requires time-consuming

evaluation. The goal of our approach is to reduce the diagnostic data to only what is relevant, and

to present the correlated diagnostic results to the programmer in a way that is easy to interpret.

2.3.5 Minerva

Minerva [30] is a testbed architecture for distributed debugging of wireless sensor networks.

Since it is a testbed architecture, it uses direct connections (serial or otherwise) between the motes

and the servers, rather than wireless links. It also requires that a diagnostic board be installed at

each node to provide access to the debug port of the sensor node’s processor. The debug board

is connected to a server that is independent of the server used to collect data from the nodes.

The debugging server controls the motes’ processors. This enables tracking of the internal state of

individual nodes, whole-network suspension, and distributed assertion checking.

Since Minerva assumes a direct serial (or other) testbed connection from the debug board

to the server, it is able to perform functions that cannot be performed in a live environment, such

as transmitting more data with higher throughput, speed, and reliability. Our approach is meant to

help in both test and live environments to provide information on relationships between diagnostic

metrics at a scale appropriate to resource-constrained devices.
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Chapter 3

Overview of R

Our diagnostic system is implemented using R, a powerful statistical programming language,

and the relational database structure of MySQL. It is assumed that the reader is already familiar

with SQL-style databases. We focus on providing an overview of the R programming language.

In Section 3.1, we provide an introduction to R. Section 3.2 provides an overview of how the R

console can be used to evaluate data quickly without needing to first create and then execute a file.

Section 3.3 details wrting functions so users can reuse code. Finally, Section 3.4 briefly discusses

using packages in R, including the packages used in our system.

3.1 Introduction and History

R is a language and programming environment for statistical computation and data repre-

sentation through plots, graphs, and figures. It is similar to the S language originally developed at

Bell Laboratories by Chambers et al. [19]. Most code written for S can be run unmodified in R,

though R contains several important differences.

R provides an open source route for people to access statistical methods, and it is highly

extensible. R is available as free software under the GNU General Public License. It compiles on

UNIX, Windows, and MacOS [19].

The language of R is very similar to that of Python. R is dynamically typed, and code

can be compartmentalized using functions and packages. Packages may contain namespaces, but

functions within a package intended for end-users are exported, meaning they can be called without

12



1 > ## Load the data set
2 > data(mtcars)
3 > ## Get the first few rows
4 > head(mtcars)
5 mpg cyl disp hp drat wt qsec vs am gear carb
6 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
7 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
8 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
9 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

10 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
11 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
12 > ## Get details on the mpg data
13 > summary(mtcars$mpg)
14 Min. 1st Qu. Median Mean 3rd Qu. Max.
15 10.40 15.42 19.20 20.09 22.80 33.90
16 > ## Load the graphics library
17 > require(graphics)
18 > ## Plot all the points
19 > pairs(mtcars, main = "MTCars Data")
20 > ## Plot MPG vs Displacement using number of cylinders as a factor
21 > coplot(mpg ˜ disp | as.factor(cyl), data = mtcars,
22 + panel = panel.smooth, rows = 1)

Listing 3.1: R Console Programming

using the namespace.

3.2 Console Programming

Using the R console, short code fragments can be run to test ideas or perform one-off

data analyses. In Listing 3.1, we show simple commands run on the Motor Trend Car Road Tests

(mtcars) data set, which comes preloaded in the data sets package for R. The mtcars data set was

extracted from the 1974 Motor Trend US magazine and comprises fuel consumption and 10 aspects of

automobile design and performance for 32 automobiles (1973–74 models) [22]. The graphs generated

would normally display in a separate viewer on screen, but for the sake of presentation, we have

included them as Figures 3.1 and 3.2. Figure 3.1 shows scatter plots of all 11 aspects of the cars

plotted against each other. The aspects are listed along the diagonal. Following an aspect along

its row shows the aspect on the y-axis plotted against each other aspect on the x-axis. Similarly,

following an aspect along its column shows a scatterplot where that aspect is plotted on the x-axis

and each other aspect is plotted on the y-axis. Figure 3.2 uses the number of cylinders in the car

to separate the data and plots the displacement versus the miles per gallon for cars with four, six,

and eight cylinders.
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Figure 3.1: MTCars Data Plotted with All Pairs

Figure 3.2: MPG vs Displacement using Number of Cylinders as a Factor
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1 power <- function(number, raiseToPower=2) {
2 temp <- number
3 while (raiseToPower > 1) {
4 raiseToPower <- raiseToPower-1
5 temp <- temp * number
6 }
7 temp ## This is the return value
8 }

Listing 3.2: R User-Defined Function, power.R

1 > ## Import the function file
2 > source("power.R")
3 > ## Run with the default raiseToPower of 2
4 > power(3)
5 [1] 9
6 > ## Run with specified raiseToPower
7 > power(3,3)
8 [1] 27
9 > ## Run with out-of-order named parameters

10 > power(raiseToPower=4, number=3)
11 [1] 81
12 > ##Run with out-of-order partially named parameters
13 > power(r=4, 3)
14 [1] 81
15 > ## Run without the number, error
16 > power(raiseToPower=4)
17 Error in power(raiseToPower = 4) : argument "number" is missing, with no default

Listing 3.3: Using the Power Function in the Console

3.3 Writing Functions

Operations that are often run in series are easily converted to user-defined functions. In R,

functions are assigned to a variable, which becomes the function name. Functions can be called using

in-order parameter passing, out-of-order parameter passing (with parameter names), and default

parameter values. The return value of a function is simply the result of the last line of code executed

in the function. In Listing 3.2, we show a simple R function for raising a number to a specified power.1

We have saved this function in a file called power.R. In Listing 3.3, we demonstrate using the power

function with various parameter passing methods.

3.4 Packages

At the time of writing, R had 5,322 packages available in the CRAN repository [7]. Most

downloads of R include a number of the basic packages. Additional packages can be downloaded

1R provides the ˆoperator for raising numbers to powers. This function is for demonstration purposes only.

15



and installed at any time. RStudio [25], used to develop our system, comes with a GUI for installing

and loading packages. The install.packages command can also be used at the console to add

packages. To load a package, the user employs either the require or library command. The

require command will return false on failure and throw a warning, whereas library will throw

an error if it fails.

We make use of ten of the available packages in our project. RMySQL [10] and DBI [17]

facilitate interfacing with our MySQL database. ggplot2 [40], graphics [20], grDevices [20], grid [20],

and gridExtra [2] are used for graphing. Finally, methods, stats, and utils, all of which are part of

the R-core [20], provide the rest of the statistical and support functions.
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Chapter 4

Framework Design

In this chapter, we introduce the design and implementation of the Corl8 analysis system.

The system relies on data from a MySQL table and allows users to choose settings that affect how

the system analyzes and classifies the data. The “interesting” data will automatically be output

in the form of an image showing a set of scatterplots that depict how the two diagnostic measures

in question vary. The system can be used to analyze a single node or all the nodes in a wireless

sensor network. First, we present an overview of the system in Section 4.1, then describe each of

the individual components.

4.1 Overview

An overview of the flow of diagnostic data through the system is show in Figure 4.1. Data

originates at the Sensor Nodes and flows into the Sensor Diagnostic Log Database (MongoDB).

Next, a Python Preprocessing Script parses the data into per minute, per sensor attempt, and per

transmission attempt metrics. As the data is processed, the Python script inserts it into the MySQL

Database. The data may also be preprocessed to reduce the number of points or to round the

measures, allowing the system to flag more points as duplicates.

The central component of our framework is the R Analyzer Function, which reads informa-

tion from the MySQL Database and accepts User-specified Parameters. The function parameters

tailor various aspects of the data analysis and how the resulting graph sets should be output. The

output for each unique combination of (i) node, (ii) independent diagnostic measure, and (iii) de-
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Figure 4.1: Diagnostic Data Flow
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pendent diagnostic measure is a graph set. The graph set contains one or more graphs. The first

graph represents the entire data set. If the parameters are set such that the data is also analyzed

based on divisions (equal width segments), a graph will also be created for each division. The graph

set is then saved as a single image. The final result of the analyzer function is a collection of graph

sets.

We discuss the details of each parameter in Section 4.3. Here we briefly consider some of

the most basic parameters. A specific node may be specified, or all nodes may be selected. The

specific diagnostic measures to be analyzed may also be specified. Database connection information

must be provided so that the analyzer can fetch the information from the MySQL database. Data

may also be rounded to a specified number of decimal places, and points which are duplicated may

be removed. A minimum number of points is specified for the system to proceed with data analysis.

During data analysis, the system tests whether or not the points are correlated by using a linear

regression test and comparing the R-squared test statistic with a user-specified minimum value for

the data to be considered correlated. The parameters also specify if the data should be analyzed

across a number of divisions (equal width segments) which helps to identify trends that exist only

in segments of the collected data. Finally, the parameters specify where to save the output and how

to format the graph set images.

The R Analyzer Function can also accept input from the Web Interface. In this case, the

graph set resulting from the analyzer is sent back to the web interface for the user to view. The web

interface is also written in R and is powered by Shiny Server [26]. The interface supports many of

the same parameters, but the inputs are specified in an interactive manner.

4.2 MySQL Database

The MySQL database may contain diagnostic measures from any number of nodes and in

any number of categories. The database must be formatted according to our specifications. To

analyze an entire system, all diagnostic information must be placed into one table. To analyze

one device at a time, the data may be split up to avoid creating large tables. When running the

analyzer, the user specifies the username, password, and host for the database connection, as well

as, the database and table names.

The table structure is shown in Table 4.1. The table contains eight columns. First, the
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Column Name Column Type Key

id int(11) Primary Key
diagnostic varchar(100) Key
pmin decimal(18,9)
pradio decimal(18,9)
psample decimal(18,9)
raw decimal(18,9)
time datetime Key
device varchar(100) Key

Table 4.1: MySQL Table Structure

id column is the primary key for the database. The diagnostic column captures the name of

a diagnostic measure. In our sensor system, we use names such as appDiagnostics-sampleAttempts

and gm862Diagnostics-wakeErrors. The names may include spaces but should not include single

quotes. The device column records the name of the device being observed. It is important to use

a device name that is human readable since this will be included in the graphs. Also, no two devices

should have the same name, or the system will combine their data. We use names such as srb 1 for

Savannah River Basin, device 1.

The data columns (pmin, pradio, psample, raw) contain the values of the diagnostic

measures in several formats: errors per minute, errors per radio attempt, errors per sample attempt,

and the raw count reported in the diagnostic message. The number of data columns may vary

among applications. For example, a user may wish to create a data column containing errors per

event detected. The data column to use for analysis is configurable in the user-specified parameters

and via the web interface. We recommend that these be decimal columns with the appropriate

precision to reduce the likelihood of rounding errors. In some cases, it may not make sense to

use per minute, transmission, or sample error rates; the raw value may be more appropriate. For

example, signal strength and battery voltage will only make sense when interpreted using the raw

values. The time column records the data timestamp.

Diagnostic measures are reported from the sensor nodes at a specified period. In our de-

ployment, devices record observation data every 5 minutes, but only record diagnostic data every

15 minutes. Thus, our interval is generally 15 minutes. However, device reboots, clock skew, and

communication errors result in reports that do not come in with data that is precisely 15 minutes

apart. As a result, when reporting data to MySQL, the time difference between this report and the

previous report is used when computing per minute measures.
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4.2.1 Populating MySQL

Our sensor nodes send cumulative diagnostics since the last reboot. These counts are then

stored in a Mongo database [16]. Because the counts are set to zero after each reboot and then

increase monotonically, the system must detect reboots. It must also exclude counts from prior

reports before dividing the diagnostic measure in the current report to computer counts per minute,

per sensor reading attempt, and per transmission attempt.

The sensor system sends back cumulativeUp, sampleAttempts, and radioAttempts

counters for the node. The cumulativeUp count represents the number of seconds the node has

been running. The sampleAttempts count is the total number of sample attempts made by the

node since the last reboot. Similarly, the radioAttempts count is the number of transmission at-

tempts made by the node since the last reboot. We use the cumulativeUp counter and the message

timestamps to detect reboots. If the device has not rebooted, the difference in the cumulativeUp

counter should match the number of seconds between the timestamps. (The system allows a 10

second grace period in case clocks have skewed.) The system cannot use only up-time since a node

might run for 1000 seconds, report, reboot, and then run for 1100 seconds before its next report.

The cumulativeUp counter is still important because the node might be down for a period of

time before the reboot, and the system should consider only up-time when calculating per minute

statistics.

When processing data, the system processes all the diagnostic reports from each device

separately, in chronological order. This allows the system to track the details from the previous

report to detect reboots and properly adjust the counts to compute the per minute, per sensor

attempt, and per transmission attempt statistics. Once the statistics have been obtained, the system

inserts one row for each diagnostic reported by the node. Thus, every row inserted for one report

corresponds to the same device and time but contains statistics for a different diagnostic measure.

After one report has been fully processed, the system proceeds to the next report from that device.

After all reports for a device have been processed, the system advances to the next device. When the

processing is complete, the database contains all the diagnostic data reported by the sensor network.

For reference, we include the Python preprocessing code that allows us to import data from

our MongoDB diagnostic log database into the MySQL database used by Corl8 in Appendix D. It

is expected that users of Corl8 will need to create custom tailored preprocessing code. The included
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code allows us to, at any time, retrieve the entire Mongo database and process it into the MySQL

database. The code includes several lines which require user customizations: the MySQL connection

details, the MongoDB database and collection, and the diagnostic measures to import.

4.3 R Analyzer Function

The R analyzer function is responsible for determining which data to display to the user for

further analysis. The analyzer requires R [20] be installed, with the gridExtra [2], RMySQL [10], and

ggplot2 [40] libraries (and their dependencies). The analyzer function is controlled by the parameters

provided by the user and acts on the data in the MySQL table. A change in the parameters can

make a significant difference in the false positive/negative rate and volume of data output for further

analysis. As a result, it is important to understand what each of the parameters controls. An

overview of the parameters is given in Table 4.2, but we discuss each in detail in later subsections.

(The full code for the Analyzer appears in Appendix A.) Before discussing the parameters in detail,

we provide an overview of the functions operation to give context for the parameters.

4.3.1 Behavior Overview

An example graph set is shown in Figure 4.2. The associated data set is for node 1 deployed

at the Baruch Institute in Georgetown, SC and compares the number of TCP disconnect errors with

the number of escape errors reported by the cellular board. The data set was analyzed using a

minimum R-Squared value of 0.75 with 4 divisions. The upper left graph shows the complete data

set, which has an R-Squared value of 0.798; this meets the requirement that it be at least 0.75 to

be considered correlated. The next graph (upper right) shows the first division is not correlated.

The following graph (middle left) is correlated and causes the system to output this graph set for

further analysis. The next two divisions (middle right and lower left) are not shown because the

data falling in those divisions did not meet the division threshold requirement. Looking at the graph

of the complete data set, it is easy to see that only a few points are present in the top half1 so these

divisions would not meet the division threshold of 5. This correlation shows a problem in the system

which is further discussed in Section 6.1.

1There is only one distinct point in the upper half, but it is darker which indicates that there are multiple equal
points.
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Parameter Instructions

device The device to consider. If “all”, all devices will be pulled from the database.
dbName The database name.
dbUser The username for the database.
dbPassword The password for the database.
dbHost The host for the database.
dbTable The database table.
diagnostics The vector of diagnostics to analyze or NULL to use all available diagnostics

from the database.
diagColX The column to use for the X diagnostic.
diagColY The column to use for the Y diagnostic.
threshold The minimum number of points required to run the correlation test.
round The number of decimal places to allow or NULL to use data as is.
maxDuplicates The maximum number of duplicates of a single point allowed in the test.
minRS The minimum r-squared value from the correlation test required to output

a graph.
minDate The start date in the form (YYYY-MM-DD HH:MM:SS).
maxDate The end date in the form (YYYY-MM-DD HH:MM:SS).
requireSubCor Require that a division be correlated in order to output the graph set.
divisions Number of segments to divide the data into.
divisionThreshold The minimum number of points in a division to run the correlation test.
folder The folder to use when saving the output graphs.
graphWidth The graph width (per graph, image will be enlarged for each graph).
graphHeight The graph height (per graph, image will be enlarged for each graph).
nCol The number of columns in the graph image.
returnGraph The first graph set will be returned, and the function will stop. No graphs

will be saved. Return value is a list (graphlist, width, height).
noDeviceError The error message given if the device parameter is blank (for use with the

Shiny server app).
placeholderTitle The title for placeholder graphs. (Placeholder graphs are generated

when a division does not meet the requirements to be analyzed.)

Table 4.2: Analyzer Parameters
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Figure 4.2: Baruch REC Node 1: TCP Disconnect Errors Versus Escape Errors
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1 for (id in devices) {
2 for (i = 1; i <= length(diagnostics); i++) { ## Arrays in R are 1 based
3 ## Fetch data for i
4 for (j = 1; j <= length(diagnostics); j++) {
5 if (i == j) { next; } ## Don’t analyze a diagnostic against itself
6 ## Fetch data for j
7 ## Run analysis
8 }
9 }

Listing 4.1: Analyzer Function Pseudocode

The analyzer function first connects to the database and fetches the distinct devices and

associated diagnostics that are available. If a specific device has been selected, it will perform

analysis for that device only rather than using all the available devices.

Next, the function loops over all the fetched devices. For each diagnostic, it fetches the

available data for that device. Next, it pairs this diagnostic with every other diagnostic for analysis.

The pseudocode for this is in Listing 4.1. We consider both (i, j) and (j, i) because divisions of data

are analyzed only along the x-axis. If i and j are only correlated for high values of j, this would be

found when analyzing (j, i) but not when analyzing (i, j).

The analysis involves several steps. First, the system selects the reported data measures for

the two diagnostic measures being analyzed and merges the data sets based on matching timestamps.

Specifically, this means that these two diagnostic measures were reported at the same time. Next, it

removes any incomplete cases where data is only present for one of the two diagnostics. For example,

if a new diagnostic measure was added to the system, it would not be present in older diagnostic

reports. If the system was comparing the pre-existing diagnostic to the new diagnostic, it would need

to discard all the data for the pre-existing diagnostic recorded prior to the implementation of the

new diagnostic. Next, the system tests that the number of complete cases meets the user-specified

threshold for analysis. If it does, the system continues.

The user may request that points which have been duplicated more than a certain number of

times be reduced. For example, if the limit was set to 10 and the point (0.5,0.25) occurred 18 times

in the data, the system would remove 8 of the points, leaving 10. Points that have been duplicated

a large number of times can cause the R-squared result to appear higher than would be expected

upon visual inspection of the data. For example, two diagnostic statistics that are frequently both

0 would have a large number of points at (0,0). This causes the model to have a high R-squared

value because it is very good at predicting the dependent value (0) when the independent value is 0.

25



Unfortunately, the model may not be a good predictor for data that does not occur at (0,0), which

is what is important. Removing all but a small number of these points results in an R-squared value

which more accurately represents the predictive power of the model. The system does not remove

all of the points because it is still important that the model be better at predicting repeated points

than ones which only occur sporadically. Thus, this setting allow the user to balance the importance

of predicting repeated points and the predictive power for the distinct points. Next, the system

checks that the filtering process has not caused the number of remaining data points to drop below

the threshold for analysis.

After passing all the checks, the data set is analyzed and a graph is generated and stored

temporarily. The analysis approach is described in Section 4.3.2. If the user specifies more than one

division to be analyzed, the data is divided into even segments between min and max, with each

division being (max-min)/numberOfDivisions wide (equal width segments). Each division that

meets the specified threshold is analyzed and graphed. Divisions not meeting the division threshold

are not graphed; however, an empty placeholder graph is created so it is easy to identify that the

division did not meet the threshold. Finally, if at least one correlated set of data was detected, all

the temporary graphs are saved as a single image depicting the graph set.

4.3.2 Analysis Methodology

The statistical analysis is a standard linear regression test over the complete set of data,

followed by repeated linear regression over each of the divided segments, if any. The R-Squared value

is compared with the user-specified value to determine if the graph should be labeled as correlated.

Whether or not to output the final graph set is determined by user settings which specify whether

any one graph needs to be correlated or if the correlated graph must be from one of the divisions.

It may be of interest to the user to try different correlation tests or different methods of

dividing the data. Each of these tests are readily integrated within the R code. Adjusting the

correlation test would require altering the two lines of code which currently run the test and save

the test statistic. The graph output will also need to be adjusted to show the new fit line and to

display the correct formula for this line. When adjusting these, it is important to adjust them both

for the full data set analysis and the analysis of the divided data sets as these are analyzed separately

in the code. Adjusting the division method requires adjusting the bin numbers assigned to each data

point. These are assigned in one line of code. Adjusting the graph label also requires changes to
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only one line of code to reflect the new division system. A few other lines of code will also need to

be modified to provide the necessary support code. While changing the tests does require altering

the R code, it allows extensions of the Corl8 project.

4.3.3 Device Parameter

The device parameter is used to limit the amount of data analyzed by Corl8. The default

value of “all” results in all devices being analyzed. The alternative considered is to pass the name

of a single device, in which case only that one device will be processed.

4.3.4 Database Parameters

The database parameters are used to specify the database host (dbHost), the database

name (dbName), the database username (dbUser), the database password (dbPassword), and

the table name (dbTable). A user may wish to use different tables to limit the amount of data

contained in each table. For example, the user may wish to have a table for each deployment such

that the system could be instructed to run on all the nodes in a particular deployment. Different

tables may also be used to test different methods of data consolidation.

4.3.5 Diagnostic Parameters

The diagnostic parameters are used to control the diagnostic measures to be analyzed and

the data columns to be used in analyzing them. The diagnostics parameter can be a vector

of diagnostic categories to be analyzed, or NULL, resulting in all the available categories being

analyzed. In either case, the system analyzes each diagnostic measure as the independent variable

in comparison with every other measure as the dependent variable. Since there must be independent

and dependent variables, the minimum length of the vector is two.

The diagColX and diagColY parameters determine the data columns from which diag-

nostic measures should be read. diagColX is used for the independent variable, and diagColY is

used for the independent variable.
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4.3.6 Filter Parameters

Several parameters control data filtering. The first is the threshold parameter, which

specifies the number of complete cases that must be present in the data for any further tests to

be run. (A complete case occurs when a node reports both diagnostic measures for the same time

period.) The threshold is applied both to the incoming data and to the filtered data.

The round parameter is used to round data points to a specified number of decimal places.

If set to NULL, the data will be used exactly as it appears in the MySQL table. Positive numbers

set the number of decimal places. Negative values are also allowed, resulting in rounding to powers

of ten. For example, a value of -1 would round 6 to 10. When rounding at 5, R rounds to the even

digit. For example, when rounding to two decimal places, 3.225 rounds to 3.22 and 3.235 rounds

to 3.24. This functionality is OS-dependent and subject to representation error. For example, the

system might represent 3.235 as 3.23499999999998, which would cause it to round down to 3.23. For

more details, see the R documentation on the round function [21].

The maxDuplicates parameter is used to remove data points that occur more than a

parameter-specified number of times in the data set. This parameter is primarily used to ensure

that the R-squared value is not significantly increased by a concentration of points at a certain value.

Diagnostic measures are paired based on the timestamp of the report, meaning that the measures

were reported at the same time. Commonly, points become concentrated at (0,0), meaning both

measures reported no activity. Using a value of 10 allows the R-squared value to benefit from the

concentrated points, but false correlations are reduced. It is important that all data is rounded

for this parameter to work well, otherwise values such 0.9985 and 0.9983 will not be culled. The

appropriate number of decimal places to round to should be based on the significance of those

decimal places in data. A value which is frequently between 0 and 1 may need 3 decimal places

where a value between 1 and 100 may need only 1 to be well-represented.

Next, the minRS parameter specifies the minimum R-squared value for data to be considered

correlated. Data that is considered correlated is graphed using green circular points, while data that

is considered un-correlated is graphed using red triangular points. There must also be at least one

correlated graph for the analyzer to save the graph files for user inspection. Thus, a higher value

will reduce the number of graphs the user must inspect but may not output an important graph,

whereas a lower value increases the number of output graphs which must be inspected.
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The minDate and maxDate parameters allow the data points to be filtered by when they

were collected. This allows users to analyze data from a specific time period. These parameters

must be strings in the form of YYYY-MM-DD HH:MM:SS. If values are not passed, or are set to

NULL, the system will not filter on that date range. This allows, for example, year-to-date analysis

by setting minDate = 2014-01-01 00:00:00 and maxDate = NULL.

4.3.7 Division Parameters

The divisions parameter is used to specify the number of divisions applied during data

analysis. Divisions are established by creating even width segments between the minimum and

maximum data values, where each segment is (maximum-minimum)/numberOfDivisions wide.

The divisionThreshold parameter allows users to specify a lower threshold for divisions since

they only contain a portion of the original data set. For our work, we used an overall threshold of

25, with 4 divisions, and a division threshold of 5.

4.3.8 RequireSubCor Parameter

The requireSubCor parameter forces one of the data set divisions to be correlated in

order for the system to save the graph set. If this parameter is true and only the full data set is

correlated, the graph set will not be saved. If the parameter is false, a graph would be saved. In

our tests, several graph sets demonstrated that when the complete data set passed the requirements

to be considered correlated, but none of the divisions passed the requirements, the graphs did not

actually demonstrate a conclusive trend.

4.3.9 Graph Parameters

The graph parameters specify how the graphs will be saved. The folder parameter specifies

the save path. The graphWidth and graphHeight parameters specify the width and height of

each graph in pixels, respectively. The nCol parameter specifies the number of columns that should

be used when plotting multiple graphs. As the number of divisions is increased, the number of

columns should also be increased to prevent an overly tall image. A graph set image which is 2

graphs wide and 3 graphs high would be a total size graphWidth*2 by graphHeight*3.
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4.3.10 Web Interface Parameters

The returnGraph parameter is used to avoid creating temporary files when the system

returns graph sets to the web interface. When using the command-line interface, this parameter

should be set to the default value of false.

The noDeviceError parameter is the error string displayed when no device is specified.

R Shiny Server tries to fetch a graph immediately when the user loads the web application. As a

result, this error is always shown in the location for a graph when the interface is first loaded. Thus,

the web interface uses this string to inform the user to select the node and diagnostics they want

to analyze, and to then click “Update Graph.” When using the command-line interface, the default

value should be used.

4.3.11 Placeholder Graph

The placeholderTitle parameter is used as the title for placeholder graphs. Placeholder

graphs are produced when a data set division does not meet the minimum qualifications for analysis.

For the web interface, a placeholder graph is also be produced when the complete data set does not

meet the minimum qualifications for analysis.

4.4 Graphs

The graphs produced by our system always place the graph of the full data set in the upper-

left corner. Division graphs are the plotted across and then down. (In a two column image with three

divisions, the upper-left would be the full data set, the upper-right would be the division starting

with the minimum data point, the lower-left would contain the graph of the middle division, and

the lower-right would be the last division.)

Points are plotted with 30% opacity; duplicated points show darker than points occurring

only one time. The least square regression line is shown on the graphs, along with a shaded 95% con-

fidence area. Graphs with green, circular points met the minimum R-Squared value to be considered

correlated. Graphs with red, triangular points do not meet the minimum value.

Graphs are titled with the appropriate device ID, and axes are labeled with the diagnostic

measure. Each graph is titled with the division boundaries (if any) and the formula for the regression
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line. When graph files are saved, the files are named based on the node ID and the diagnostic mea-

sures in the graph. So for example, a graph saved as

bar 1 appDiagnostics-radioAttempts gm862Diagnostics-cumulativeUp.png is a

graph for the bar 1 node2 and graphs the appDiagnostics-radioAttempts diagnostic mea-

sure versus the gm862Diagnostics-cumulativeUp diagnostic measure. (When saving graphs,

all non-alphanumeric characters except for dash and underscore are removed from the node ID and

diagnostic measure name.)

4.5 Web Interface

The web interface is a key part of our system because it allows users to interactively view

specific graph sets, often based on suspected correlations. Users can specify function parameters and

select the node and diagnostics to analyze. Specifying the parameters in the web interface allows

developers to interactively determine the best parameters to use for analysis. After inspecting

graphs generated by Corl8’s batch analysis mode, users may wish to reanalyze some of the data

to help narrow the cause of unexpected diagnostic correlations. This can be done using different

date ranges or comparing other diagnostic categories that may be involved in the trend. The web

interface is designed for simplicity; it facilitates use of the system by field technicians who have no

programming skills. Also, because it generates one graph set at a time, it allows the user to quickly

pinpoint potential anomalies.

The web interface allows users to interactively set many of the parameters for Corl8’s anal-

ysis function. (Some parameters are not available, including the database connection information,

error messages, and the returnGraph parameter.) The interface is shown in Figure 4.3. When it is

first opened, the area where the graph set would normally be displayed contains a message directing

the user to select the desired settings and click the “Update Graph” button at the bottom of the

sidebar. Once processing is complete, the graph set is updated and ready to be viewed. Depending

on the size of the data set, it may take several seconds for the graph set to be updated, but in our

tests, the time was always reasonable, even for very large data sets. For details on each of the fields,

we refer readers to the appropriate function parameter, as described in Section 4.3. The node field

corresponds to the node parameter. The diagnostic x and diagnostic y fields are placed in a vector

2In our deployment, this is node 1 at Baruch REC.

31



Figure 4.3: Corl8 Web User Interface
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and correspond to the diagnostics parameter. Data for diagnostic x becomes diagColX. Data

for diagnostic y becomes diagColY. The date range, start time, and end time become minDate

(beginning of the date range and the start time) and maxDate (end of the date range and end time).

The threshold field becomes threshold. If the round data checkbox is unchecked, NULL will be

passed as the round parameter. Otherwise, the selected number of decimal places will be passed as

the round parameter. The selected number of maximum duplicates allowed per point corresponds

to the maxDuplicates parameter. The minimum R-squared corresponds to the minRS param-

eter. The selected number of divisions corresponds to the divisions parameter. The selected

division threshold corresponds to the divisionThreshold parameter. The selected per graph

width corresponds to the graphWidth parameter. The selected per graph height corresponds to the

graphHeight parameter. Finally, the selected number of columns in the graph set corresponds to

the nCol parameter.

4.5.1 User Interface Implementation and Configuration

The web interface is powered by Shiny Server [26]. We use the free, open source edition

of the server, but if needed, the enterprise edition could also be used. Shiny Server provides a

framework for developing web applications. The framework ensures that updates are optimized to

occur infrequently through the use of caching. This means that if the user changes only one setting,

only the values depending on that setting will be recomputed. It also implements many of the

controls needed for collecting user input and passes the associated selections to the server script for

processing.

For our system, we modified a few style details provided by Shiny Server, but otherwise the

framework provided all the required user interface controls. This allowed the file which creates the

user interface to be short and easy to understand. The details are given in Appendix B.

The Corl8 server-side system component automatically loads the available nodes and diag-

nostic measures from the database. The system also updates the available diagnostic measures each

time the user selects a new node. This ensures that the options presented to the user are valid, even

if different nodes collect different diagnostic measures. The person deploying Corl8 should configure

the dataOptions variable, which is on line 2 of the user interface definition file. This variable

contains a list of the data columns available in the MySQL table. In the list, a description is given

of the data, followed by the column name. An example configuration is shown in Listing 4.2. In this
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1 dataOptions <- list("Per Minute" = "pmin",
2 "Per Radio Attempt" = "pradio",
3 "Per Sensor Attempt" = "psample",
4 "Raw Data" = "raw")

Listing 4.2: Example Configuration for the dataOptions Variable

1 # Configuration Variables
2 dbName <- "research"
3 dbUser <- "research"
4 dbPassword <- "corl8"
5 dbHost <- "localhost"
6 dbTable <- "rates"
7 noDeviceError <- "Select the variables at right and click \"Update Graph.\""
8 placeholderTitle <- "Graph did not meet requirements (threshold) to be analyzed."

Listing 4.3: Example Server Configuration Variables

configuration, four data columns are available. The first column contains per minute data, and the

column name is pmin. The second column contains per radio attempt data and is named pradio.

The remaining two columns represent per sensor attempt and raw data and are named psample

and raw, respectively.

4.5.2 Server Implementation and Configuration

The server-side implementation is also easy to understand. The person deploying Corl8

must configure the server file. An example configuration is shown in Listing 4.3. Lines 2-6 of the

file configure the MySQL connection details. Lines 7 and 8 configure the noDeviceError and

placeholderTitle variables, but these two variables do not have to be modified. All of the

configuration variables are passed as parameters to the analyzer script; the details are described in

Section 4.3. The rest of the file implements the necessary code to retrieve and display the available

nodes, to update the available diagnostic measures when the user selects a different node, and to run

analyses and display the resulting graph sets. The complete implementation of the server is given

in Appendix C.
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Chapter 5

Use-Case Scenarios

In this chapter, we present two use-cases to demonstrate the utility of Corl8. The first

illustrates the use of batch-based analysis to discover possible errors. The second example illustrates

Corl8’s ability to support the investigation of potential flaws using the interactive web interface.

5.1 Batch Analysis

The batch analysis mode allows users to analyze all of the available diagnostic data to search

for correlated error rates. Running the system in this manner results in the production of a collection

of graph set images requiring further analysis by the user. In our example, we use data from deployed

and test nodes from the Intelligent River R© project. In Figure 5.1, we show the number of diagnostic

measures reported from each of these nodes, measured in thousands. In total, we have over 3 million

diagnostic measures from 36 nodes.

To remove duplicate data points, we use the default rounding setting to round our data

to the nearest hundredth. To assist the reader in reproducing these results, the full function call

is shown in Listing 5.1. The running time of Corl8 in batch mode on a single lab machine was

about 9 hours. Our lab machine has 8 GB of RAM and an Intel Core2 Quad CPU at 2.66 GHz;

however, because Corl8 uses a single thread, it is unable to take advantage of the 4 cores. By using

multiple processes and instructing each instance of Corl8 to process a single device, this time could

be significantly reduced. After the analysis completed, Corl8 flagged about 590 graph sets for further

investigation. The collection of graph sets can be seen in Figure 5.2.
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Figure 5.1: Nodes With Count of Diagnostic Measures

36



1 # Function call with all the default parameters listed for reference
2 motecorr(device = "all",dbname="research", user="research", password="corl8",
3 dbhost="localhost", table="rates",
4 diagnostics = NULL, diagColX = "data", diagColY = "data",
5 threshold = 25, round = 2, maxdup = 10, minrs = 0.75, minDate = NULL,
6 maxDate = NULL, requireSubCor = TRUE,
7 divisions = 4, divisionthreshold = 5,
8 folder = "./graphs/", graphw = 500, graphh = 500, ncol = 2,
9 returnGraph = FALSE, noDeviceError = "Blank device parameter",

10 noGraphError = "Graph did not meet requirements to be analyzed.")
11

12 # Equivalent shortened function call
13 motecorr(dbname="research", user="research", password="corl8",
14 dbhost="localhost", table="rates")

Listing 5.1: Batch Analysis Function Call

Figure 5.2: Resulting Graph Set Collection from Batch Analysis
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Some of these graphs show expected correlations. An example is shown in Figure 6.2. This

is graph of the number of sampling attempts versus the up-time for the sampling board used to

collect the sample data. Graphs of this type show that the system is functioning properly. Still,

users should review the graphs to ensure proper operation over time. Some graphs also give different

views of the same data. For example, in our system, CRC errors were correlated to the number of

sampling failures. They were also correlated to the number of sampling attempts and the up-time

for the sampling boards since a sample failure would result in another sampling attempt and more

up-time for the sampling system.

Other graphs may immediately be sources of concern. For example, Figure 6.1 is a graph

showing that escape errors are correlated to TCP disconnect errors in our system, indicating that

the cellular modem was sometimes indicating that a connection was established, when it was not.

For more discussion on this graph, see Section 6.1.

The default analysis parameters have thus far met our goal of providing a reasonable number

of useful graphs as output. However, we recommend evaluating different parameter selections to find

the settings which work best for the user’s particular deployment. One expected change is to increase

or decrease the minimum R-squared value used to identify a correlated graph, which will further

balance the number of graph sets with the false positive rate.

5.2 Interactive Analysis

The interactive analysis mode allows for faster results because the system produces only

one graph set at a time in response to the user’s request. Developers can use this interface to

diagnose system issues. If a specific interaction is suspected, they can quickly view a graph of the

two diagnostic measures in question. They can then modify the search parameters as needed to

investigate whether the issue started or stopped at a specific time, and to see if viewing the data

based on per minute, per radio attempt, or per sample attempt yields better information. For

example, a developer might want to compare log errors per sample attempt versus log errors per

radio attempt to see if one is more related than the other.

The web interface also allows the user to investigate what happens when different settings

are used. Within the web interface, the user can interactively control every parameter of the analysis

function, excluding the ones having to do with connecting to the database and saving the graphs.
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Adjusting values interactively provides a quick way to increase and decrease the various thresholds

and allowances, and to immediately see how a specific graph would be affected. This helps the user

determine the optimal settings to use when running batch analysis.
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Chapter 6

Results

Using Corl8 to analyze our Intelligent River R© deployments throughout South Carolina, we

were able to identify several interesting data trends, which helped to identify performance issues. In

the following sections, we present three of the most interesting findings.

6.1 Cellular Modem Faults

The graph set in Figure 6.1 represents data from node 1, deployed at the Baruch Institute

in Georgetown, SC. It shows TCP disconnect errors from our cellular board are correlated with

escape errors from the same board. This correlation indicates an error in our sensor nodes. As

background, to send data to the Intelligent River R© server, the cellular modem must first create a

connection to the server. After the connection is established, the modem automatically switches from

“command mode” to “data mode.” In command mode, each byte sent to the modem is interpreted

as a command. In data mode, the bytes are instead relayed over the connection, which sends the

data to the server. Once the connection is established, and the mote has sent its data, it needs to

disconnect and shutdown. To complete this task, it must first escape back into command mode.

This correlation data points to an issue where the cellular modem emits a connection response, but

the connection is not fully established. As a result, the connection is immediately dropped, causing

the device to fall back into command mode. From there, the escape command fails because the

cellular mode is already in command mode, and the disconnect command also fails because it is no

longer connected. This pattern of failure increases the up-time of the cellular chip, increasing energy
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Figure 6.1: Baruch Node 1: TCP Disconnect Errors Versus Escape Errors
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consumption, and decreasing device longevity. This correlation pattern points to this error chain.

6.2 Sample Attempts Versus Node Up-time

The graph set in Figure 6.2 shows the number of sample attempts performed versus the

up-time of the sampling board in a device used at an IEEE conference demonstration. This graph

set shows that the node was working properly. Looking closely at the graph, one outlier shows where

2 sampling attempts were made, and the ADS sampling board was up for 8.25 seconds, instead of

the expected 8 seconds. If there were more outliers in the data set, it would be a cause for concern,

but since there is only one outlier, it does not warrant concern.

6.3 Hunnicutt Creek Sampling Problems

While monitoring the nodes in the on-campus Hunnicutt Creek deployment, we noticed that

two nodes were occasionally unresponsive for long periods. Looking at the application diagnostics,

we observed that a large number of sample failures were occurring during these time periods. Since

these sample failures were unexpected, we employed Corl8 to determine the cause of the failures. The

observed failures began on February 24, 2014, so we ran a batch test using a start date (minDate)

of 2014-02-24 00:00:00. We also reduced the threshold to 10, and the division threshold to 3

because we had only a few reports showing these issues. Corl8 automatically flagged three graphs

for node 1. These graphs showed sample failures as correlated to radio attempts, conversion errors

on the sampling board, and up-time on the transmission board.

We were able to eliminate two of the graphs (radio attempts and up-time) because they

showed that when a large number of sample failures occurred, the number of radio attempts (and

thus up-time) was reduced. This is an expected correlation since the nodes only transmit when they

have three successful samples. It did not, however, help to solve why the node experienced sample

failures. The conversion errors from the SDI-12 sampling board provided more information. The

graph produced by Corl8 is shown in Figure 6.3.

It was also interesting that Corl8 only flagged two graphs from node 3 —radio attempts

and up-time on the transmission board. Thus, we turned to the web interface to allow us to view

the graph of sample failures versus conversion errors. The graph is shown in Figure 6.4. From this
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Figure 6.2: IEEE Demo Node 1: Sample Attempts Versus ADS Sampling Board Up-time
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Figure 6.4: Hunnicutt Creek Node 3: Sample Failures Versus SDI-12 Board Conversion Errors
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graph, we can observe that the general trend is still present, but the presence of several outliers

caused Corl8 to not automatically flag the data set. At the time of writing, the development team

had not yet identified the underlying cause of this error.

6.4 Conclusion of Results

We were able to find these errors through the use of Corl8’s batch mode processing and

further investigated the errors using the interactive mode. The time spent investigating the graphs

was only a few hours to obtain useful information for addressing errors in our system and verifying

that other components were working as expected. As a result, we are confident in the utility of our

system to vastly decrease the time required to debug wireless sensor network systems.

46



Chapter 7

Conclusions and Discussion

Researchers are deploying wireless sensor networks more than ever before due to an in-

creasing demand to monitor the physical world. Large numbers of sensors integrated with small,

low-power, wireless transceivers compose these networks. The harsh, volatile locations in which

these devices are often deployed increase their failure rate and decrease the rate at which packets

can be successfully transmitted.

Corl8 helps developers determine causes of failure by analyzing correlated diagnostic mea-

sures. Since hardware resources such as memory and power are often scarce, our work seeks to

minimally impact the amount of data that must be stored and transmitted. We also seek to avoid

add-in network protocols, which consume additional resources and would be difficult to add to ex-

isting wireless sensor networks. The flexibility of our system allows researchers with sensor networks

already collecting some amount of diagnostic data to implement our system with no changes to their

network. They need only route received diagnostic data into our system.

Corl8 allows for batch mode analysis to help identify unknown faults in a system, and

interactive analysis for investigating suspected faults. In our tests, Corl8 successfully found the

correlated diagnostic measures to explain why nodes were seeing an unusually large number of

cellular disconnect errors and assisted an exploration into why some nodes were experiencing an

increased number of sampling errors. We believe Corl8 will help researchers more quickly and easily

diagnose performance anomalies.
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7.1 Recommendations for Further Research

It is our hope that the reach of the Corl8 system can be expanded to include observation

data. We believe this will lead to more robust diagnostic analyses, particularly when environmental

factors are suspected as a potential cause for failure. We also hope that this will lead to researchers

in other disciplines using Corl8.
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Appendices
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Appendix A Analyzer motecorr.R Code

1 library(gridExtra)
2 library(RMySQL)
3 library(ggplot2)
4

5 #’ Node Diagnostic Analyzer
6 #’
7 #’ This function will output graphs into the specified folder or return them.
8 #’
9 #’ @param device The device to consider. If "all", all devices will

10 #’ be pulled from the database.
11 #’ @param dbName The database name.
12 #’ @param dbUser The username for the database.
13 #’ @param dbPassword The password for the database.
14 #’ @param dbHost The host for the database.
15 #’ @param dbTable The database table.
16 #’ @param diagnostics The vector of diagnostics to analyze or NULL to use all
17 #’ available diagnostics from the database.
18 #’ @param diagColX The column to use for the X diagnostic.
19 #’ @param diagColY The column to use for the Y diagnostic.
20 #’ @param threshold The minimum number of points required to run the correlation test.
21 #’ @param round The number of decimal places to allow or NULL to use data as is.
22 #’ @param maxDuplicates The maximum number of duplicates of a single point allowed
23 #’ in the test.
24 #’ @param minRS The minimum r-squared value from the correlation test required
25 #’ to output a graph.
26 #’ @param minDate The start date in the form (YYYY-MM-DD HH:MM:SS)
27 #’ @param maxDate The end date in the form (YYYY-MM-DD HH:MM:SS)
28 #’ @param requireSubCor Require that a division be correlated in order to output the
29 #’ graph set.
30 #’ @param divisions Number of segments to divide the data into.
31 #’ @param divisionThreshold The minimum number of points in a division to run the
32 #’ correlation test.
33 #’ @param folder The folder to use when saving the output graphs.
34 #’ @param graphWidth The graph width (per graph, image will be enlarged for each graph).
35 #’ @param graphHeight The graph height (per graph, image will be enlarged for each graph).
36 #’ @param nCol The number of columns in the graph image.
37 #’ @param returnGraph The first graph set will be returned, and the function will
38 #’ stop. No graphs will be saved. Return value is a list
39 #’ (graphlist, width, height).
40 #’ @param noDeviceError The error message given if the device parameter is blank (for
41 #’ use with the Shiny server app).
42 #’ @param placeholderTitle The title for placeholder graphs. (Placeholder graphs are
43 #’ generated when a division does not meet the requirements to be analyzed.)
44 #’
45 #’ @keywords correlation, motes
46 #’ @export
47 #’ @examples
48 #’ motecorr()
49 #’ motecorr(’srb_4’)
50 #’ motecorr(folder="./highTreshold", threshold=100)
51 #’ To plot only the full graph with no divisions, don’t forget to disable requireSubCor
52 #’ motecorr(divisions = 1, requireSubCor = FALSE)
53 motecorr <- function(device = "all",dbName = "research", dbUser = "research",
54 dbPassword = "corl8", dbHost = "localhost", dbTable = "rates",
55 diagnostics = NULL, diagColX = "data", diagColY = "data",
56 threshold = 25, round = 2, maxDuplicates = 10, minRS = 0.75,
57 minDate = NULL, maxDate = NULL, requireSubCor = TRUE,
58 divisions = 4, divisionThreshold = 5,
59 folder = "./graphs/", graphWidth = 500, graphHeight = 500, nCol = 2,
60 returnGraph = FALSE,
61 noDeviceError = "Blank device parameter",
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62 placeholderTitle = "Graph did not meet requirements to be analyzed.") {
63 con <- dbConnect(MySQL(),dbname=dbName, user=dbUser, password=dbPassword,
64 host=dbHost)
65 if (length(device) == 0) {
66 dbDisconnect(con)
67 stop(noDeviceError)
68 }
69 if (device == "all") {
70 ids <- dbGetQuery(con, paste("select distinct(‘device‘) from",dbTable))
71 if (is.null(diagnostics)) {
72 diag <- dbGetQuery(con, paste("select distinct(‘diagnostic‘) from",dbTable))
73 } else {
74 diag <- data.frame(diagnostics)
75 colnames(diag) <- c("diagnostic")
76 }
77 } else {
78 ids <- data.frame(device)
79 if (is.null(diagnostics)) {
80 diag <- dbGetQuery(con, paste("select distinct(‘diagnostic‘) from",dbTable,
81 paste("where ‘device‘=’", device,"’",sep="")))
82 } else {
83 diag <- data.frame(diagnostics)
84 colnames(diag) <- c("diagnostic")
85 }
86 }
87 dateWhere <- ""
88 if (!is.null(minDate)) {
89 minDate <- gsub("[ˆ[(:num:)(:)(-)(/)] ]", "", minDate)
90 dateWhere <- paste(dateWhere, " AND ‘time‘ >= ’",minDate,"’",sep="")
91 }
92 if (!is.null(maxDate)) {
93 minDate <- gsub("[ˆ[(:num:)(:)(-)(/)] ]", "", minDate)
94 dateWhere <- paste(dateWhere, "AND ‘time‘ <= ’",maxDate,"’",sep="")
95 }
96 devcount <- 0
97

98 for (id in ids$device) {
99 devcount <- devcount + 1

100 print(paste("Device",devcount,"of",nrow(ids),id))
101 diagn <- length(diag$diagnostic)
102 d1 <- 1
103 while (d1 <= diagn) {
104 print(diag$diagnostic[d1])
105 data1 <- dbGetQuery(con,
106 paste("SELECT ‘",diagColX,"‘ as ‘data‘, ‘time‘ from ",dbTable,
107 " WHERE ‘device‘ = ’",id,"’ AND ‘diagnostic‘=’",
108 diag$diagnostic[d1],"’",dateWhere, sep=""))
109 if (nrow(data1) > 1) { ## Need at least 2 rows to test correlation
110 if (!is.null(round)) {
111 # Round data as requested
112 data1$data <- round(data1$data, round)
113 }
114 d2 <- 1
115 while (d2 <= diagn) {
116 if (d1 == d2) { ## Skip Identical Diagnostics
117 d2 <- d2 + 1
118 next
119 }
120 data2 <- dbGetQuery(con,
121 paste("SELECT ‘",diagColY,"‘ as ‘data2‘, ‘time‘ from ",dbTable,
122 " WHERE ‘device‘ = ’",id,"’ AND ‘diagnostic‘=’",
123 diag$diagnostic[d2],"’",dateWhere, sep=""))
124 if (nrow(data2) > 1 && !is.null(round)) {
125 # Round data as requested
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126 data2$data2 <- round(data2$data2, round)
127 }
128 result <- merge(data1, data2)
129 result <- result[complete.cases(result), ];
130 if (nrow(result) >= threshold && !is.null(round)) {
131 result$data2 <- round(result$data2, round)
132 }
133 if (nrow(result) >= threshold && nrow(result) > maxDuplicates) {
134 result <- result[with(result,order(data,data2)), ]
135 remove <- rep(FALSE, maxDuplicates);
136 ## Remove the Overly Duplicated Points
137 for (t in (maxDuplicates+1):nrow(result)) {
138 if (result[t, "data"] == result[(t-maxDuplicates), "data"]
139 && result[t, "data2"] == result[(t-maxDuplicates), "data2"]) {
140 ## Remove t becasue we have more than maxDuplicates
141 remove <- append(remove, TRUE)
142 } else {
143 remove <- append(remove, FALSE)
144 }
145 }
146 result <- result[!remove, ]
147 }
148 division <- c()
149 graphlist <- list()
150 if (nrow(result) >= threshold) {
151 ## We need to retest since we may have removed points
152 ##corr <- cor.test(result$data, result$data2)
153 saveplots <- FALSE
154

155 m = lm(result$data2 ˜ result$data)
156 rs <- summary(m)$r.squared
157

158 color <- "#CC0000"
159 shape <- 17
160 if (!is.na(rs) && rs > minRS) {
161 color <- "#00CC00"
162 shape <- 16
163 # If requireSubCor, this won’t cause graphs to be saved
164 if (!requireSubCor) { saveplots <- TRUE }
165 }
166 p <- ggplot(result, aes(x = data, y = data2)) + geom_smooth(method = "lm") +
167 geom_point(alpha=0.3,colour=color,shape=shape)
168 eq <- substitute(
169 expression("Cases: "˜c˜˜italic(y) == a + b %.% italic(x)*","˜˜italic(r)ˆ2˜"="˜r2),
170 list(
171 a = format(coef(m)[1], digits = 2),
172 b = format(coef(m)[2], digits = 2),
173 c = nrow(result),
174 r2 = format(rs, digits = 3)
175 )
176 )
177

178 graphlist[[length(graphlist)+1]] <- p +
179 scale_x_continuous(name=diag$diagnostic[d1]) +
180 scale_y_continuous(name=diag$diagnostic[d2]) + ggtitle(eval(eq))
181 ## Add Data Range
182 graphlist[[length(graphlist)]] <- arrangeGrob(graphlist[[length(graphlist)]],
183 main = textGrob("\n All Data",
184 gp = gpar(fontsize = 16, face = "bold", col = "black")))
185

186

187 if (divisions > 1) {
188 ## Make our division graphs
189 min <- result[1,"data"]
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190 max <- result[nrow(result),"data"]
191 step <- (max-min)/divisions
192 for (t in 1:nrow(result)) {
193 div <- floor((result[t, "data"]-min)/step)
194 if (!is.nan(div) && div > (divisions - 1)) {
195 # Fixes a slight round off/boundary problem where the last point
196 # can end up in its own division.
197 div <- divisions - 1
198 }
199 division <- append(division, div)
200 }
201 divided <- split(result, as.factor(division))
202 currentmin <- min
203 currentdiv <- 1
204 for (df in divided) {
205 while (df$data[1] >= currentmin && currentmin < max) {
206 # This catches divisions with no data
207 title <- paste("\n Data Range:",currentmin,"to",(currentmin+step))
208 if (df$data[1] < currentmin+step && nrow(df) >= divisionThreshold) {
209 # Make sure we meet divisionThreshold and this data is for this division
210 m = lm(df$data2 ˜ df$data)
211 rs <- summary(m)$r.squared
212

213 color <- "#CC0000"
214 shape <- 17
215 if (!is.na(rs) && rs > minRS) {
216 color <- "#00CC00"
217 shape <- 16
218 saveplots <- TRUE
219 }
220 p <- ggplot(df, aes(x = data, y = data2)) + geom_smooth(method = "lm") +
221 geom_point(alpha=0.3,colour=color,shape=shape)
222 subtitle <- substitute(
223 expression("Cases: "˜c˜˜italic(y) == a + b %.% italic(x)*","˜˜italic(r)ˆ2˜"="˜r2),
224 list(
225 a = format(coef(m)[1], digits = 2),
226 b = format(coef(m)[2], digits = 2),
227 c = nrow(df),
228 r2 = format(rs, digits = 3)
229 )
230 )
231

232 graphlist[[length(graphlist)+1]] <- p +
233 xlim(currentmin, currentmin+step) + xlab(diag$diagnostic[d1]) +
234 scale_y_continuous(name=diag$diagnostic[d2]) + ggtitle(eval(subtitle))
235 } else {
236 # We didn’t meet the threshold, plot a placeholder graph
237 dfTemp <- data.frame()
238 graphlist[[length(graphlist)+1]] <- ggplot(dfTemp) + geom_point() +
239 xlim(currentmin, currentmin+step) + xlab(diag$diagnostic[d1]) +
240 ylab(diag$diagnostic[d2]) + ylim(0, 100) + ggtitle(placeholderTitle)
241 }
242 graphlist[[length(graphlist)]] <- arrangeGrob(
243 graphlist[[length(graphlist)]],
244 main = textGrob(title,
245 gp = gpar(fontsize = 16, face = "bold", col = "black"))
246 )
247 currentmin <- currentmin + step # Update the range
248 }
249 }
250 }
251

252 # Compute Graph Size
253 if (length(graphlist) > nCol) {
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254 width <- graphWidth * nCol
255 nCol2 <- nCol
256 } else {
257 nCol2 <- length(graphlist)
258 width <- graphWidth * nCol2
259 }
260 height <- ceiling(length(graphlist)/nCol) * graphHeight
261 # Add details to the graphlist
262 graphlist[["main"]] <- paste("\n",id)
263 graphlist[["ncol"]] <- nCol2
264

265 if (returnGraph) {
266 # If the graphs are to be returned (likely to shiny)
267 dbDisconnect(con)
268 return(list(graphlist,width,height))
269 }
270 if (saveplots) {
271 # If graphs are to be saved
272 png(
273 file = paste(folder,
274 gsub("[ˆ[:alnum:]\\_\\-]", "",
275 paste(id, diag$diagnostic[d1], diag$diagnostic[d2], sep="_")
276 ),
277 ’.png’, sep=""),
278 width = width,
279 height = height
280 )
281 do.call(grid.arrange, graphlist)
282 dev.off()
283 }
284 } else if (returnGraph) {
285 # If the graphs are to be returned, but we didn’t make a graph.
286 # (likely this is going to shiny server)
287 dbDisconnect(con)
288 df <- data.frame()
289 graphlist[[length(graphlist)+1]] <- ggplot(df) + geom_point() +
290 xlim(0, 10) + ylim(0, 100) + ggtitle(placeholderTitle)
291 graphlist[["main"]] <- paste("\n",id)
292 graphlist[["ncol"]] <- 1
293 return(list(graphlist,graphWidth,graphHeight))
294 }
295 d2 <- d2 + 1
296 }
297 }
298 d1 <- d1 + 1
299 }
300 if (returnGraph) {
301 # If the graphs are to be returned, but we didn’t make a graph.
302 # (likely this is going to shiny)
303 dbDisconnect(con)
304 df <- data.frame()
305 graphlist <- list()
306 graphlist[[length(graphlist)+1]] <- ggplot(df) + geom_point() +
307 xlim(0, 10) + ylim(0, 100) + ggtitle(placeholderTitle)
308 graphlist[["main"]] <- paste("\n",id)
309 graphlist[["ncol"]] <- 1
310 return(list(graphlist,graphWidth,graphHeight))
311 }
312 }
313 dbDisconnect(con)
314 }

Listing 1: Analyzer Function motecorr.R
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Appendix B Shiny Server ui.R Code

1 # Configure the data options
2 dataOptions <- list("Per Minute" = "data",
3 "Per Radio Attempt" = "pradio",
4 "Per Sensor Attempt" = "psample",
5 "Raw Data" = "raw")
6

7 library(shiny)
8

9 # Define UI for corl8 application
10 shinyUI(pageWithSidebar(
11 # Application title
12 headerPanel("Corl8"),
13

14 sidebarPanel(
15 tags$head(
16 tags$style(type=’text/css’,
17 paste("@media (min-width: 1200px) { .row-fluid .span4 { width: 23%; }",
18 ".row-fluid .span8 { width: 74%; } }",
19 "@media (min-width: 768px) and (max-width:900px) { select { width: 190px; }",
20 " input, textarea { width: 180px; }}")
21 )
22 ),
23 uiOutput("mote"),
24 uiOutput("diagX"),
25 selectInput("diagColX", "Data for Diagnostic X:", dataOptions),
26 uiOutput("diagY"),
27

28 selectInput("diagColY", "Data for Diagnostic Y:", dataOptions),
29 dateRangeInput("daterange", "Date Range", start = "2010-01-01", end = Sys.Date(),
30 min = "2000-01-01", max = Sys.Date(), format = "mm/dd/yy",
31 startview = "month", weekstart = 0, language = "en",
32 separator = " to "),
33 textInput("mintime","Start Time:", value="00:00:00"),
34 textInput("maxtime","End Time:", value="23:59:59"),
35 sliderInput("threshold", "Threshold:", min=0, max=1000, value=25),
36 checkboxInput("roundData", "Round Data", value=TRUE),
37 conditionalPanel(
38 condition = "input.roundData == true",
39 sliderInput("round", "Number of Decimal Places:", min=-2, max=3, value=2)
40 ),
41 sliderInput("maxdup", "Maximum Duplicates Allowed Per Point:", min=1,
42 max=100, value=10),
43 sliderInput("minrs", "Minimum R-Squared:", min=0, max=1,
44 value=0.75, step= 0.05),
45 sliderInput("divisions", "Number of Divisions:", min=1, max=100, value=4),
46 sliderInput("divisionthreshold", "Division Threshold:", min=1, max=500, value=5),
47 sliderInput("graphWidth", "Per Graph Width:", min=100, max=1000, value=500),
48 sliderInput("graphHeight", "Per Graph Height:", min=100, max=1000, value=500),
49 sliderInput("ncol", "Number of Columns in the Graph Set:", min=1, max=10, value=2),
50

51 actionButton("graphButton", "Update Graph")
52 ),
53

54 mainPanel(
55 h3(textOutput("caption")),
56 plotOutput("corl8Plot")
57 )
58 ))

Listing 2: User Interface ui.R
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Appendix C Shiny Server server.R Code

1 # Configuration Variables
2 dbName <- "research"
3 dbUser <- "research"
4 dbPassword <- "corl8"
5 dbHost <- "localhost"
6 dbTable <- "rates"
7 noDeviceError <- "Select the variables at right and click \"Update Graph.\""
8 placeholderTitle <- "Graph did not meet requirements (threshold) to be analyzed."
9 # End Configuration

10

11 library(shiny)
12 library(gridExtra)
13 library(RMySQL)
14 library(ggplot2)
15 source("../motecorr.R")
16

17 con <- dbConnect(MySQL(),dbname=dbName, user=dbUser, password=dbPassword, host=dbHost)
18 ids <- dbGetQuery(con, paste("select distinct(‘device‘) from",dbTable))
19 dbDisconnect(con)
20 #ids <- dbGetQuery(con, paste("select distinct(‘device‘) from",dbTable))
21

22 # Define server logic required for corl8
23 shinyServer(function(input, output) {
24

25 # Output the available devices
26 output$mote <- renderUI({
27 selectInput("mote", "Mote:", ids$device)
28 })
29

30 # Fetch the diagnostics
31 diagOpt <- reactive({
32 if (is.null(input$mote)) {
33 return(c("Select a Mote"))
34 }
35 con <- dbConnect(MySQL(),dbname=dbName, user=dbUser, password=dbPassword, host=dbHost)
36 diag <- dbGetQuery(con, paste("select distinct(‘diagnostic‘) from",dbTable,
37 paste("where ‘device‘=’", input$mote,"’",sep="")))
38 dbDisconnect(con)
39 diag$diagnostic
40 })
41

42 # Render the diagnostic selects
43 output$diagX <- renderUI({
44 selectInput("diagX", "Diagnostic X:", diagOpt())
45 })
46 output$diagY <- renderUI({
47 selectInput("diagY", "Diagnostic Y:", diagOpt())
48 })
49

50 # Run the processing as needed when the button is clicked
51 graphlist <- reactive({
52 input$graphButton
53 isolate(
54 if (input$roundData) {
55 round <- input$round
56 } else {
57 round <- NULL
58 }
59 )
60 minDate <- isolate(paste(as.character(input$daterange[1]),input$mintime))
61 maxDate <- isolate(paste(as.character(input$daterange[2]),input$maxtime))
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62

63 isolate(motecorr(device = input$mote, dbName=dbName, dbUser=dbUser,
64 dbPassword=dbPassword, dbHost=dbHost, dbTable=dbTable,
65 diagnostics = c(input$diagX, input$diagY), diagColX = input$diagColX,
66 diagColY = input$diagColY,
67 threshold = input$threshold, round = round, maxDuplicates = input$maxdup,
68 minRS = input$minrs, minDate = minDate, maxDate = maxDate,
69 divisions = input$divisions, divisionThreshold = input$divisionthreshold,
70 graphWidth = input$graphWidth, graphHeight = input$graphHeight,
71 nCol = input$ncol, returnGraph=TRUE, noDeviceError = noDeviceError,
72 placeholderTitle = placeholderTitle))
73 })
74 # Helper Functions
75 graphWidth <- function() {
76 graphlist()[[2]]
77 }
78 graphHeight <- function() {
79 graphlist()[[3]]
80 }
81 # Generate a plot
82 output$corl8Plot <- renderPlot({
83 do.call(grid.arrange, graphlist()[[1]])
84 }, height=graphHeight, width=graphWidth)
85 })

Listing 3: Shiny Server server.R
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Appendix D Python MongoDB to MySQL Processing Script

1 import collections
2 import time
3 import pymongo as mo
4 import _mysql
5 import MySQLdb as mdb
6 import sys
7 from decimal import Decimal
8

9 ## Connect to MySQL
10 ## Configure the connection as follows:
11 ## MySQL Host, Username, Password, Database
12 con = mdb.connect(’localhost’, ’root’,’’,’research’);
13 cur = con.cursor()
14

15 ## If not localhost, configure this connection as:
16 ## MongoDB Host, Port
17 moc = mo.MongoClient()
18 ## Please configure the proper MongoDB Database.Collection
19 ird = moc.ir_diagnostics.messages;
20

21 ## Load in the diagnostics we want
22 ## Configure this with the diagnostic measure categories and
23 ## individual measures that should be imported.
24 diagnostics = {
25 "appDiagnostics": [
26 "sampleAttempts",
27 "sampleFailures",
28 "sampleLosses",
29 "radioAttempts",
30 "radioFailures",
31 "crcErrors",
32 "cumulativeUp"
33 ],
34 "sdi12Diagnostics": [
35 "activationErrors",
36 "conversionErrors",
37 "collectionErrors",
38 "cumulativeUp"
39 ],
40 "oneWireDiagnostics": [
41 "searchErrors",
42 "conversionErrors",
43 "collectionErrors",
44 "cumulativeUp"
45 ],
46 "adsDiagnostics": [
47 "wakeErrors",
48 "configErrors",
49 "conversionErrors",
50 "sampleErrors",
51 "cumulativeUp"
52 ],
53 "gm862Diagnostics": [
54 "rssi",
55 "wakeErrors",
56 "sleepErrors",
57 "setProfileErrors",
58 "gsmRegistrationErrors",
59 "gprsRegistrationErrors",
60 "rssiErrors",
61 "timeErrors",
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62 "smsStartErrors",
63 "smsEndErrors",
64 "getIpErrors",
65 "dropIpErrors",
66 "emailStartErrors",
67 "emailEndErrors",
68 "tcpConnectErrors",
69 "tcpDisconnectErrors",
70 "escapeErrors",
71 "cumulativeUp"
72 ],
73 "xbee900Diagnostics": [
74 "wakeErrors",
75 "cmdErrors",
76 "sendErrors",
77 "frameErrors",
78 "baseRSSI",
79 "cumulativeUp"
80 ],
81 "logDiagnostics": [
82 "formatErrors",
83 "headerReadErrors",
84 "headerWriteErrors",
85 "headerCorruptionErrors",
86 "recordCorruptionErrors",
87 "validationErrors",
88 "enqueueErrors",
89 "overflowErrors",
90 "dequeueErrors",
91 "underflowErrors"
92 ],
93 };
94

95 ds = ird.distinct("deviceID"); ## Get the unique devices
96 dsids = [];
97 dscount = 0;
98 for id in ds:
99 dscount = dscount + 1

100 if id is None:
101 print "No device id, skipping"
102 continue
103 elif id.find(’#’) >= 0:
104 devid = id.split(’#’,1)[1]
105 else:
106 devid = id
107 devstr = "Device " + devid + " " + str(dscount) + " of " + str(len(ds));
108 print devstr
109 dsids.append(devid) ## Add it to our list so we know we got everything
110 ## Get the sorted messages
111 mes = ird.find(
112 {"deviceID": id},
113 ["deviceID", "datestamp", "unpackedMessage"]
114 ).sort("datestamp",1);
115 ## Init datalast, This will force it to look like a reboot happened
116 dataLast = {
117 "timestamp" : 0,
118 "unpackedMessage":
119 {
120 "appDiagnostics": {
121 "cumulativeUp": -100,
122 "sampleAttempts": 0,
123 "radioAttempts": 0
124 }
125 }
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126 }
127

128 totalm = str(mes.count());
129 mcount = 0;
130 scount = 0;
131 for m in mes:
132 if mcount % 1000 == 0:
133 print devstr + " Processed "+ str(mcount) + " of " + \
134 totalm + " Skipped "+str(scount);
135 mcount = mcount + 1
136 if "datestamp" not in m.keys():
137 print "No datestamp, skipping"
138 continue
139 if ("unpackedMessage" not in m.keys() or
140 "appDiagnostics" not in m["unpackedMessage"].keys()):
141 scount = scount + 1
142 continue ## Can’t process without this, must be old data
143

144 appkeys = m["unpackedMessage"]["appDiagnostics"].keys();
145 if ("cumulativeUp" not in appkeys or "radioAttempts" not in appkeys or
146 "sampleAttempts" not in appkeys):
147 scount = scount + 1
148 continue ## Can’t process without this, must be old data
149 m["timestamp"] = time.mktime(m["datestamp"].timetuple());
150 if dataLast["timestamp"] > m["timestamp"]:
151 print "Out of order data!"
152 exit();
153

154 # Fix data to be ints
155 m["unpackedMessage"]["appDiagnostics"]["cumulativeUp"] = \
156 Decimal(m["unpackedMessage"]["appDiagnostics"]["cumulativeUp"])
157 m["unpackedMessage"]["appDiagnostics"]["radioAttempts"] = \
158 Decimal(m["unpackedMessage"]["appDiagnostics"]["radioAttempts"])
159 m["unpackedMessage"]["appDiagnostics"]["sampleAttempts"] = \
160 Decimal(m["unpackedMessage"]["appDiagnostics"]["sampleAttempts"])
161

162 ## Try to detect reboots
163 time1 = Decimal(m["timestamp"] - dataLast["timestamp"])
164 time2 = (m["unpackedMessage"]["appDiagnostics"]["cumulativeUp"] -
165 dataLast["unpackedMessage"]["appDiagnostics"]["cumulativeUp"])
166 radioa = (m["unpackedMessage"]["appDiagnostics"]["radioAttempts"] -
167 dataLast["unpackedMessage"]["appDiagnostics"]["radioAttempts"])
168 samplea = (m["unpackedMessage"]["appDiagnostics"]["sampleAttempts"] -
169 dataLast["unpackedMessage"]["appDiagnostics"]["sampleAttempts"])
170

171 ## Cache the keys
172 munkeys = m["unpackedMessage"].keys()
173 reboot = False;
174 ## Compute Errors Per Minute
175 if (abs(time1-time2) > 10): ## Reboot happened, 10 second grace
176 reboot = True
177 print "Reboot"
178 if m["unpackedMessage"]["appDiagnostics"]["cumulativeUp"] > 1500:
179 print "Possible error: " + \
180 str(m["unpackedMessage"]["appDiagnostics"]["cumulativeUp"])
181

182 if not reboot and (time2 == 0 or radioa == 0 or samplea == 0):
183 print "ERROR: Duplicate data?"
184 print m
185 print dataLast
186 scount = scount + 1
187 continue
188 for section in diagnostics:
189 if section not in munkeys : ## Does this exist
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190 continue
191 for part in diagnostics[section]:
192 if (part not in m["unpackedMessage"][section].keys() or
193 (not reboot and
194 part not in dataLast["unpackedMessage"][section].keys())):
195 continue
196 diag = section + "-" + part
197 if m["unpackedMessage"][section][part] is str:
198 m["unpackedMessage"][section][part] = \
199 Decimal(m["unpackedMessage"][section][part])
200 if reboot:
201 perminute = (m["unpackedMessage"][section][part] /
202 m["unpackedMessage"]["appDiagnostics"]["cumulativeUp"] * 60)
203 persample = (m["unpackedMessage"][section][part] /
204 m["unpackedMessage"]["appDiagnostics"]["sampleAttempts"])
205 perradio = (m["unpackedMessage"][section][part] /
206 m["unpackedMessage"]["appDiagnostics"]["radioAttempts"])
207 else: ## Take out the last readings
208 perminute = (m["unpackedMessage"][section][part] -
209 dataLast["unpackedMessage"][section][part]) / time2 * 60
210 persample = (m["unpackedMessage"][section][part] -
211 dataLast["unpackedMessage"][section][part]) / samplea
212 perradio = (m["unpackedMessage"][section][part] -
213 dataLast["unpackedMessage"][section][part]) / radioa
214 ## Insert into MySQL
215 cur.execute("INSERT INTO ‘research‘.‘rates‘ (‘id‘, " + \
216 "‘diagnostic‘, ‘pmin‘, ‘pradio‘, ‘psample‘, ‘raw‘, " + \
217 "‘time‘, ‘device‘) VALUES (NULL, ’" + diag + "’, ’" + \
218 str(perminute) + "’, ’" + str(perradio) + "’, ’" + \
219 str(persample)+"’, ’" + str(m["unpackedMessage"][section][part]) + \
220 "’, ’"+str(m["datestamp"])+"’, ’"+devid+"’);")
221 dataLast = m;
222 ## This device is done. Print statistics and continue.
223 print devstr + " Done. Processed "+ str(mcount) + " of " + totalm + \
224 " Skipped " + str(scount);
225 print "Processing Complete."
226 du = collections.OrderedDict.fromkeys(dsids)
227 if (len(du) != dscount):
228 print "WARNING: Errors may have occured during shortening. Only output " + \
229 str(len(du)) + " devices.";

Listing 4: Python MongoDB to MySQL Processing Script
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