
Distributing and Trusting Images between Cloud
Providers

An Honors Thesis

Presented to

the Honors College of

Clemson University

In Partial Fulfillment

of the Requirements for

Departmental Honors

Bachelors of Science

Computer Science

by

Loren Klingman

May 2011

Accepted by:

Dr. Sebastien Goasguen, Committee Chair

Abstract

The computing industry continues to shift towards the cloud computing paradigm. Compa-

nies use cloud computing daily to serve their websites and offer services in scalable and cost effective

environment while researchers use it to process massive amounts of data at great speeds. One of the

challenges identified for using cloud computing in computational science is that each user wants to

provision their own customized environment. Users also want to be able to provision this environ-

ment on different cloud providers. Virtualization is being used to establish this type of environment

and rich APIs are being developed to expose these services to the users.

However, the cloud providers want to know that the user is not creating a security risk on

the machines by using the virtual image to access the machine hardware, thus enabling the user

to access data or communications that should have been protected. The provider may also wish to

ensure that the user complies with policy guidelines.

The work presented investigates building a chain of trust between image producers (users)

and cloud providers. An endorser role is defined as the middle agent who checks the integrity of

the images. We implement a solution using a virtual machine image catalogue (VMIC) originally

developed at CERN which allows a provider or endorser to provide a list of the images they have

approved for distribution. We extend it to provide a way to sign the list of images and the images

themselves in order to provide trust. Finally, we add the distribution framework to allow catalogue

owners to import the approved images from other catalogues.

ii

Acknowledgments

I would first like to thank my advisor, Dr. Sebastien Goasguen, for his patience, support,

ideas, and guidance throughout the process of my finding and completing a project. If it were not

for him, I would not have been able to complete my honors thesis.

I also owe my appreciation to the team at CERN in Geneva, Switzerland who laid the

foundation for the Virtual Machine Image Catalogue and worked with me to merge my work into

their source code.

Many thanks are also due to Dr. Nancy Meehan and Dr. Roy Pargas who helped me

begin my research career at Clemson University. Thanks to you for introducing me to the field and

providing guidance and eduction to me on how to write my research.

A special thanks to my roommates Trent and Patrick who have listened to me talk about

my work and provided encouragement to me along the way.

I would also like to thank my mother, Dr. Nancy Phillips, for her invaluable help proof-

reading the manuscript.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Figures . vi

List of Listings . vii

1 Introduction . 1
1.1 Grid Computing vs Cloud Computing . 2
1.2 VMIC Principles . 3
1.3 Motivation for VMIC Sharing . 3
1.4 Contributions . 4
1.5 Thesis Organization . 4

2 Related Work . 5
2.1 Grid Computing . 5
2.2 Cloud Computing . 6
2.3 Virtual Machines . 6
2.4 Use of Virtual Machines in the Grid . 6
2.5 Use of Virtual Machines in the Cloud . 7
2.6 Security Concerns with Virtual Machines . 7

3 Background and Technology Used . 9
3.1 Django . 9
3.2 Django with Apache . 11
3.3 Django with Google AppEngine . 11
3.4 Shibboleth . 12

4 VMIC . 14
4.1 Functionality . 14
4.2 Internal VMIC . 14
4.3 VMI Staging . 15
4.4 External VMIC Issues . 16
4.5 External VMIC Proposed Solution . 17
4.6 Trust Negotiation . 18
4.7 VMIC Prototype Implementation . 19

5 Conclusions and Discussion . 24
5.1 Answering the Research Questions . 24

iv

5.2 Recommendations for Further Research . 24

Bibliography . 25

v

List of Figures

3.1 Django Admin Interface . 10

4.1 VMIC Diagram . 15
4.2 VMIC Home Page . 19
4.3 VMIC Edit Endorser . 20
4.4 VMIC Import via Command Line . 20
4.5 VMIC Import via Web Interface . 20
4.6 VMIC Get image via Web Interface . 21
4.7 VMIC Edit VMI . 22
4.8 VMIC Export RDF File . 23

vi

List of Listings

3.1 Sample Django Model . 10
3.2 Sample Django Admin File . 10
3.3 WSGI Configuration for Django . 11
3.4 Apache Configuration for WSGI . 11
3.5 Google AppEngine Configuration . 12
3.6 Apache Configuration for Security with Shibboleth 13
3.7 Shibboleth Configuration to Secure a Folder . 13

vii

Chapter 1

Introduction

Cloud computing has become a buzzword in the era of Web 2.0. According to Foster,

Cloud computing is ”A large-scale distributed computing paradigm that is driven by economies of

scale...” [11] By this, he means that it allows a central pool of computers to be drawn from as needed

such that companies do not have to purchase excess equipment to handle peak or intermittent loads.

People have already begun to optimize Amazon’s EC2 cloud for both kinds of work. For example,

recent uses include mass processing of data for research projects [17] and scaling systems as demand

requires [25].

Because customers want to operate in a custom environment (to choose the operating sys-

tem, software packages, and software configuration), this work extends existing work by investigating

how a company can trust that specific images meet their policies. (Running a rogue or untrusted

image can result in many security issues and policy violations.) Starting with a virtual machine

image catalog (VMIC) developed at CERN which allows for the listing of approved images and dis-

tribution within a company [27], this project expands on that work by implementing a system that

allows one company to trust another company to validate images. Our code then works to prevent

anyone from falsely appearing to have been validated by that company and to prevent image files

that have been modified from being approved to run.

1

1.1 Grid Computing vs Cloud Computing

While many people do not distinguish between cloud computing and grid computing, the

differences are important.

1.1.1 Grid Computing

Grid computing is based on a project-oriented business model meaning the user organiza-

tions have to write a proposal and are then granted a certain number of computing hours on the

grid. Grids define and provide certain protocols to enable interoperability and security. These items

are both needed so that the people at the various administrative domains can ensure that the global

and local resource usage policies are met and so that groups with different hardware and software

configurations will be able to interact with each other and share resources. The resource usage for

a grid is generally controlled by batch-scheduling, which creates inherit latency as the scheduling

tool waits for the requested resources to be available. Grids may be connected via fast networking

and shared data drives to allow for maximum throughput in shared applications. Grid sites natively

build in the assumption that the equipment may change within one site, so applications are built to

be movable and security is engineered into the fundamental infrastructure. [11]

1.1.2 Cloud Computing

In contrast, the model for cloud computing is based on a consumption basis where the user

pays for the amount of resources used. This rewards resource conservation since users are only billed

for what they use and requires little forward planning due to the appearance of unlimited resources

which can quickly be brought online. [1] The architecture of a cloud is usually simpler than that

of a grid with the resources being abstracted or virtualized for the user. The nature of a cloud

reduces the wait time of a job since many jobs are run at the same time on a single system, but as a

result it will decrease the speed. Also, cloud computing does not work as well as grid computing for

data intensive applications since the infrastructure is not usually in place to allow fast data sharing.

Virtualization is a common technique to handle the need to give each user on a system in the cloud

the appearance that they are using it alone and helps to protect each users private data. In the

past, the use of virtualization created a significant loss of speed, but now, through hardware support,

the performance gap has been narrowed. [11] Clouds are defined to be, ”A large-scale distributed

2

computing paradigm that is driven by enconomies of scale, in which a pool of abstracted, virtualized,

dynamically-scalable, managed computing power, storage, platforms, and services are delivered on

demand to external cusomers over the Internet” [11]. A lack of common protocols in the cloud

industry has caused integration and interoperability problems which prevent users from being able

to use the same setup on different cloud providers. [1]

1.2 VMIC Principles

Virtual machine image catalogs must have the following sets of principles. First, they

introduce a basic policy for trusting and distributing images within an organization. Second, they

make machine provisioning more flexible since there is a pre-existing list of available operating system

and software configurations (virtual machine images) which can be quickly brought online using a

hypervisor. Third, they are self managing in terms of ensuring that the distributed images stay

current with new versions of images and changes to the approved image list. Fourth, they allow

image producers and endorsers to endorse all the images produced or endorsed by another person.

Fifth, they release enough information through the use of metadata to allow for image retrieval,

verification, and for users to know which image they need. (The information for users could include:

version, architecture, software, and purpose.) [27]

1.3 Motivation for VMIC Sharing

Our project applies to both grid and cloud computing since it is possible for either to allow

the use of virtual machine images. The benefits afforded by the ability to use the same image set

across a variety of sites are as large as what the web provided when it became a universal information

protocol [10] and prevents users’ data from falling prey to data lock-in [1]. We enhance the benefits

of virtual machine image catalog sharing by adding the ability to share the approval of images

throughout various sites. However, the risks incurred by the incorrect use of image sharing are also

very large. As a result, we are working to eliminate the possibility of attacks caused by being able to

implement the kernel and adminstrative changes in the virtual machine image when sharing virtual

machine image catalogs by strengthening the validation process.

3

1.4 Contributions

This thesis provides conributions in three areas. First, we investigate the trust and identity

verification issues involved in allowing external users and groups to submit their images to a cloud.

Second, we propose a solution which works with an existing image catalog to allow a catalog to be

endorsed and exported to the web. Finally, we display the prototype system implementation.

1.5 Thesis Organization

Chapter 2 surveys some of the closely related work in cloud computing, virtual machines,

and the use of virtual machines in the grid. Chapter 3 provides a brief overview of each of the

technologies that we used to create our prototype (Django, Google App Engine, and Shibboleth).

Chapter 4 details our work with the virtual machine image catalog to allow for the endorsing and use

of external machine images. Finally, Chapter 5 presents a summary of our work and our conclusions.

4

Chapter 2

Related Work

Much work has already been done in the domain of clouds, grids, and virtual machines,

and some work has been done on placing virtual machines in the grid and cloud. In this chapter,

we present some of the most relevant work. The next section presents uses for grid computing. In

section 2.2, we review related work on cloud computing. Section 2.3 investigates related work on

virtual machines. Section 2.4 looks at virtual machines as they have moved into the grid. Section 2.5

discusses the use of virtual machines in the cloud. Finally, Section 2.6 examines security concerns

with virtual machines.

2.1 Grid Computing

The grid is a combination of technologies designed to allow for sophisticated data processing

and research computing, but it also requires social aspects to induce people to use the system. [12]

By considering other distributed frameworks in history, such as electricity grids and the grid formed

by Chicago as a gateway city to the West [5], we get an idea about how the grid should work.

Because of the large-scale resource sharing, innovative applications, and, in some cases, high per-

formance orientation, the grid makes quick work of changing society by allowing for fast processing

of studies on ozone depletion, global warming, pollution, biology, and many other areas of research.

Research in the grid looks at cooridinating resource sharing and user authentication between various

virtual organizations through the use of protocols, services, application programming interfaces, and

software developement kits. [13]

5

2.2 Cloud Computing

Computers may eventually be viewed as a fifth utility (after water, electricity, gas, and

phone). This would be provided via cloud computing where the user could lease processing power

and storage in the cloud rather than purchasing his own hardware. Cloud computing frequently

leverages virtual machines, but that will be investigated more in section 2.5. Using computers in the

cloud adds a layer of complexity via Service Level Agreements (SLAs) and risk management strategies

in case the cloud becomes inaccessible. Several different cloud platforms have been developed such

as Google AppEngine, Microsoft Azure, and Amazon EC2 which allow for application scalability

and high performance computing. [3]

2.3 Virtual Machines

Virtual machines were developed by IBM in the late 1960’s to provide concurrent, interac-

tive access to mainframe computers. [24] This allowed the virtual machines to be a replica of the

underlying physical machine so users had the illusion of running directly on the physical machine.

More benefits such as the ability to isolate programs and run multiple flavors/configurations of op-

erating systems came later in the process. There have also been many improvements in the ways

that the virtual OS interacts with hardware devices on the host system. Some of the major areas

of study for this pertain to the networking interface, since the virtual systems should not be able

to detect the network traffic that is targeted to the host OS or to other virtual machines that are

running. [24] Much work has also been done by Intel and Advanced Micro Devices to improve the

performance of virtual machines by implementing hardware optimizations that reduce the amount

of overhead from the virtual machine hypervisor.

2.4 Use of Virtual Machines in the Grid

Virtual machines in the grid address three issues that arise from using a standard grid

environment: support for legacy applications, a layer of security between untrusted code and users,

and computation deployment that is independent of site administration. They also allow complete

environment customisation for the user, administrator privileges to execute restricted tasks, resource

control at the virtual machine manager, and site-independence for implementation. Virtual machines

6

do create some overhead but hardware integration with virtual machine management has greatly

reduced this overhead. [11] According to tests, the difference is less than 10% for micro and macro

tasks. [9] Virtual machines also take some time to bring up, but that is all one time and can be

reduced with fast disc speeds and resumes instead of full boots. [9] Benefits are also gained with

virtual machines because multiple jobs can be run simultaneously without any need to worry about

conflict. This decreases the job wait time and allows resources that would have otherwise been left

idle to be used. [18] Since virtual machines can be integrated with the current grid structure, it is

an easy change to make to gain all of these benefits.

2.5 Use of Virtual Machines in the Cloud

The benefits of virtual machines in the cloud are very similar to the benefits of virtual

machines in the grid. Cloud providers such as Amazon EC2 and Rackspace actively use virtual

machines in the cloud. Since virtual machines in the cloud are the same as the virtual machine

anyone can run on their desktop, research in this area pertains to the management of the virtual

machines. One such paper looks at various techniques for provisioning virtual machine instances [22].

Other researchers look at how to manage and trust the virtual machine images [27] and [28]. Trusting

the images is important, because the image is the starting point, a bad image will result in virtual

machines that are compromised from the beginning. Still others investigate security weaknesses of

virtual machines in the cloud. These security weaknesses exist in virtual machines in general but

are more prevalent in the cloud where machines are shared between several different users. We look

at these security concerns in section 2.6.

2.6 Security Concerns with Virtual Machines

A major concern with virtual machines is whether the various virtual machines on one host

system are properly isolated from each other. Since users would have root and kernel access to

the virtual system, it is important that the host only give the virtual machine access to its own

data. Schiffman et al. investigate using hardware to verify that isolation is properly happening [20].

Christodorescu et al. research methods for securing virtual machines without need to make as-

sumptions about the state of the virtual machine [4]. For more information on security concerns

7

with virtual machines and security concerns for cloud computing see the ACM workshop on Cloud

computing security. [21]

8

Chapter 3

Background and Technology Used

Before we explain the design of our virtual machine image catalog, it is important to give

a brief overview of each of the technologies used in the development of the catalog so that the

reader can better understand our design choices. The first technology used is the Django framework

for Python which helps to automate the creation of administration pages and assists with code

reusability. The second is WSGI which enhances the Apache web server by adding the ability to

run Python scripts like Django and send the result to web browers. Third, we show how to add the

ablilty to run Python and Django on Google AppEngine which could enable the catalog to live in the

cloud. The fourth and final piece is Shibboleth which is a single sign on platform used to automate

logins with Clemson University’s (and many other companies and institutions) login framework.

3.1 Django

According to the project website, ”Django is a high-level Python Web framework that

encourages rapid development and clean, pragmatic design.” This means that it focuses on high

performance and fast development. Django also adheres to the DRY - (Don’t Repeat Yourself)

principle so the code tries to ensure that the same code segment never needs to be entered in two

places.

The Django tutorial [7] shows the simplicity of creating a script with an administration

interface. Simply fill in a model (see Listing 3.1) and create an admin.py file to register the model

as part of the administration interface (see Listing 3.2), and your site will be ready to publish

9

Figure 3.1: Django Admin Interface

with an administration interface already built for you. The default interface provided by Django

would be similar to the one in Figure 3.1. This ease of use extends into the creation of the main

pages of websites and into template design. For more information, see the Django website and

documentation [6].

1 class Reporter (models . Model) :
2 fu l l name = models . CharField (max length =70)
3

4 def u n i c o d e (s e l f) :
5 return s e l f . f u l l name
6

7 class A r t i c l e (models . Model) :
8 pub date = models . DateTimeField ()
9 head l ine = models . CharField (max length =200)

10 content = models . TextFie ld ()
11 r e p o r t e r = models . ForeignKey (Reporter)
12

13 def u n i c o d e (s e l f) :
14 return s e l f . h ead l ine

Listing 3.1: Sample Django Model

1 import models
2 from django . con t r i b import admin
3

4 admin . s i t e . r e g i s t e r (models . A r t i c l e)

Listing 3.2: Sample Django Admin File

10

3.2 Django with Apache

WSGI must be used in order to run Python scripts through the Apache web-server. WSGI

stands for Web Server Gateway Interface. It is a specification developed by Python for web servers

and application servers to communicate with web applications (though it also has additional func-

tions). Using it is a fairly simple process, install mod wsgi into Apache, add a WSGI configuration

file (see Listing 3.3), and a lines of code to the Apache configuration file to load the WSGI file (see

Listing 3.4). More help can be obtained from the websites of WSGI [29] and modwsgi [8].

1 import os
2 import sys
3

4 sys . path . append (’ /home/ l o r en / workspace /VMIC/ s r c /vmic ’)
5 sys . path . append (’ /home/ l o r en / workspace /VMIC/ s r c /vmic/vmic ’)
6

7 os . env i ron [’DJANGO SETTINGS MODULE ’] = ’ vmic . s e t t i n g s ’
8

9 import django . core . hand le r s . wsgi
10 a p p l i c a t i o n = django . core . hand le r s . wsgi . WSGIHandler ()

Listing 3.3: WSGI Configuration for Django

1 WSGIScriptAlias /vmic /home/ l o r e n / workspace /VMIC/ s r c /vmic/vmic/apache/vmic . wsgi

Listing 3.4: Apache Configuration for WSGI

3.3 Django with Google AppEngine

Google AppEngine is a platform as a service which as Armbrust says in his paper, ”is

targeted exclusively at traditional Web applications” [1]. The scalability allows for users applications

to scaled and for the user to pay only for the services used. Other services provide scalability, with

Google, the user never has to worry about how many servers to bring online at each point during

the day because it automatically scales for you.

To implement this technology, first, the user needs a Google AppEngine account with a

space for this application, and the Google AppEngine SDK installed on their system. After config-

uration (see Listing 3.5, the SDK allows the user to execute appcfg.py update ./ to upload their

application to the AppEngine servers and deploy it. For more information on Google AppEngine or

to get an account, visit the website [15].

11

Getting a Django application online in Google AppEngine requires a bit of finesse because

the standard sqlite or MySQL database backend will not work on Google AppEngine. Also, a few

extra modules which allow for the framework to communicate properly in the cloud must be added

to Django. Adding the modules, simply requires a few downloads and added configuration lines to

load the new modules. The database changes require switching the database over to nonrel. If the

fields are all compatible, this is as simple as changing a line in the settings and migrating your data

over to the new database, but if the Django implementation is using ManyToManyFields or a few

other non-supported features, then work arounds will have to be written in the code. A full tutorial

on this topic is available from All Buttons Pressed [19].

1 a p p l i c a t i o n : loren−django
2 v e r s i on : 1
3 runtime : python
4 a p i v e r s i o n : 1
5

6 b u i l t i n s :
7 − remote api : on
8

9 i n b o u n d s e r v i c e s :
10 − warmup
11

12 hand le r s :
13 − u r l : / ah /queue/ d e f e r r e d
14 s c r i p t : djangoappengine / d e f e r r e d / handler . py
15 l o g i n : admin
16

17 − u r l : / ah / s t a t s / .∗
18 s c r i p t : djangoappengine / appstat s / u i . py
19

20 − u r l : /media/admin
21 s t a t i c d i r : django / cont r i b /admin/media
22 e x p i r a t i o n : ’ 0 ’
23

24 − u r l : / .∗
25 s c r i p t : djangoappengine /main/main . py

Listing 3.5: Google AppEngine Configuration

3.4 Shibboleth

”The Shibboleth System is a standards based, open source software package for web single

sign-on across or within organizational boundaries. It allows sites to make informed authorization

12

decisions for individual access of protected online resources in a privacy-preserving manner.” [16]

This means that websites can release only the amount of information needed about a user to each

service while also allowing the user to sign-on only one time to access all of the services.

An application, for example, could be told only that the user attempting to access it was a

member of Clemson University which would be enough information for a digital library to know that

the user could access articles under the Clemson license, but for other services, the identity provider

service could send information such as the users name and email or more detailed membership

information such as whether the user is faculty, staff, or a graduate or undergraduate level student.

When Shibboleth is installed as a client system, the user sets up each of the identity providers

that the system should accept information from and in what order the providers should chain

together. The user also selects other security settings and the language that the client and provider

will use to talk to each other.

Once Shibboleth is setup and integrated with Apache the user can choose to setup secure

directories in either the Apache (see Listing 3.6) or Shibboleth (see Listing 3.7) configuration file.

For more information, see the Shibboleth website and documentation [16].

1 <Direc tory / var /www/html/ secure>
2 AuthType sh ibbo l e th
3 ShibRequ i reSes s ion On
4 r e q u i r e va l id−user
5 Order deny , a l low
6 Allow from a l l
7 </Directory>

Listing 3.6: Apache Configuration for Security with Shibboleth

1 <Host name=” 1 3 0 . 1 2 7 . 4 9 . 8 ”>
2 <Path name=” secure ” authType=” sh ibbo l e th ” r e q u i r e S e s s i o n=” true ”/>
3 </Host>

Listing 3.7: Shibboleth Configuration to Secure a Folder

13

Chapter 4

VMIC

4.1 Functionality

The Virtual Machine Image Catalog (VMIC) helps to create a chain of trust between image

producers, endorsers, and cloud providers. Each endorser can have their own VMIC where they

publish the images that they have endorsed. (These images have been created/produced by either

the endorser or another party who has sent the image to the endorser to be approved.) The cloud

provider can then import the images from the VMICs of the endorsers that they trust and can create

certain images for local use. Finally, the user of the cloud has access to run the images that have

been loaded in the VMIC of the cloud provider since the images have been approved to run. See

Figure 4.1 for a graphical representation.

4.2 Internal VMIC

The Virtual Machine Image Catalog as implemented by CERN already implements local

(internal) functionality. This includes the ability to manage what machine images are able to be

provisioned locally and who endorsed them (the local image repository). The catalog can also

periodically push image updates out to all the servers in the cloud which are launching virtual

machines so that the images are already locally distributed. The catalog also includes an RDF

export to allow people to view the available images and some metadata about them or to allow some

users read-only access to the system.

14

Figure 4.1: VMIC Diagram

4.3 VMI Staging

4.3.1 Internal

The virtual machine images can be staged internally in any way the site desires. Research

by CERN shows that the BitTorrent distribution system works better than SCP-Wave [27]. Using

several master nodes also helps to eliminate a single point of failure which could occur if only one

system were to contain the VMIs from the catalog that were approved to run. Initialization of

staging is caused by the VMIC, which will export the images to the hosts whenever the catalog is

endorsed.

4.3.2 External

Images are cached at each VMIC so that the internal distribution can be done without

having to contact an outside server. Images are directly transferred from the endorser VMIC to

the client VMIC which trusts that endorser. Future work might look at using Bittorrent to transfer

15

the images from the collection of VMICs that have already downloaded them to increase speed and

reduce load on the endorser catalog.

4.4 External VMIC Issues

4.4.1 Image Validation

We must be able to verify that the received image file is valid and has not been tampered with

on the endorser system or during transport. Tampering could include things like adding malicious

software, back doors, or incorrect passwords.

4.4.2 Catalog Validation

We also need to verify that the server virtual machine catalog page is valid, and the client

virtual machine catalog is allowed to access the images. This is a part of a process called trust

negotiation. [2] First, we want to be sure that the client VMIC asks the correct server for information.

Second, the server needs to ensure that the client has permission to access this information. Third,

the client needs to check that the information has not been changed by a man in the middle.

4.4.3 Keeping Everything Up To Date

As security updates are released or vulnerabilities are discovered, the endorser must react

by updating the virtual machine image (VMI) or removing their endorsement of the image. After

which, the catalogs which subscribe to that endorser will need to update their catalog. Causing this

update to happen quickly will result in a more secure system, but causing it to happen too often will

waste bandwidth and cause unneeded server load for the endorser’s VMIC. If images and catalog

metadata were pulled together, the potentially massive size of images could cause the catalog update

to take hours per endorser, which would delay the process and could cause other catalogs to fall out

of date.

4.4.4 VMI Export Chaining

If one endorser endorses another endorser or if a cloud provider trusts an endorser, should

those images be exported when they export their images? This question is complicated and pulls

16

in two different needs, one, the need for image updates to quickly propagate throughout the entire

system and the two, being able to have a full web of trust develop between endorsers and providers.

4.5 External VMIC Proposed Solution

4.5.1 Image Validation

Many would want to use MD5 to verify images, but since MD5 was found to have collisions

in 2004 [26] and has had attacks spread as far as rogue CA certificate creation in 2009 [23], we

believe that is not the answer and instead opted for the stronger SHA algorithms. Support was

implemented for SHA-1, SHA-224, SHA-256, and SHA-512. Even though SHA-1 is weaker than the

other algorithms, no attacks have compromised the full algorithm as of the writing of this paper,

and so we have enabled its use.

4.5.2 Catalog Validation

The use of public and private keys with encryption is an easy solution to the catalog valida-

tion problem. To distribute and verify public keys, we considered three algorithms, PGP, PKI, and

SHA-2. PGP ”web of trust” [14] allows sites to certify each other, but, in a small network of sites,

this would almost always result in directly contacting the other sites to acquire their public key. PKI

(Public Key Infrastructure) [30] would allow us to build off of the existing setup to encrypt commu-

nication already online, but with this option each company would need to purchase a certificate. We

have chosen to implement the SHA-2 hash algorithm, which is still strong, and recommend moving

to SHA-3 when it becomes available in order to further strengthen image verification. In an effort

to use what many companies already have available for credit card authentication and other secure

needs, we decided to use public key infrastructure for public key distribution and verification.

To ensure that the public keys are valid, the client and server VMIC must have certain

trusted Certification Authorities (CA) and check with them at runtime for expired or revoked cre-

dentials. It will also be necessary to check a local database of approved users to ensure that the

public key is valid to receive information.

17

4.5.3 Keeping Everything Up To Date

We used a cron job to periodically query and update the VMI listings from each of the

endorsers. For our system, we choose to update the listing cache once an hour though the images

could be updated more or less frequently depending on the needs of the system. We also implemented

a second cron job that would fetch any image files that had been detected as new or updated by the

cron job that fetched the VMI listings. This second cron job would fetch a maximum of one image

per run and was written to allow simultaneous instances of it to run so that multiple images could

be fetched at the same time. We choose to run this job every five minutes since it will simply die

and not cause any internet traffic if there are no images that need to be fetched.

4.5.4 VMI Export Chaining

Because the VMIC is cached at each host, a chain of exports could cause it to take a long

time for a change to make it from the top to the bottom of the chain. (For example, a chain of

length five which is cached at each host for five hours could take over a day to update.) Since the

VMICs do not have any limit to the chain size (e.g. master, submaster, client), we decided not

to have images re-exported automatically. Future work might add the ability to export the list of

trusted endorsers so that the trusted endorsers could chain without the trusted images becoming

out of date. This would still have propagation issues if the top catalog added or removed a trusted

endorser but would not have image synchronization issues.

4.6 Trust Negotiation

The user of any system should ensure a usable and reliable trust system, which is defined by

Bertino, et al. to mean that the system has a solid theory for trust languages and algorithms which

can support the needs of the system, and that the system is strong enough to limit damages caused

by an intruder. [2] Our system meets the usability requirement since public/private keys and SSL

are tested and often used in trust systems. The reliability requirement is met by using CAs which

can reject the credentials of a compromised system to quickly prevent it from sharing and receiving

data. Public/private keys prevent an attacker from gaining access to the private keys of partner

systems, which prevents the attacker from being able to impersonate partner systems.

18

Figure 4.2: VMIC Home Page

4.7 VMIC Prototype Implementation

As previously mentioned, our work builds off of previous work already completed at CERN.

The screenshots below will show all the features that pertain to our system. When users first login,

they are brought to the home page (Figure 4.2). Administrative users can add external endorsers

using the endorser management page. To add a new endorser, they simply enter the endorsers

name, digital identity, and the URL for the VMIC export file (Figure 4.3). Once endorsers have

been added, catalog imports can be done on the command line (or with a cron job) (Figure 4.4)

or via the web interface (Figure 4.5). After the endorser catalog import is done, the images can

be imported via command line or web (Figure 4.6). Adding local VMIs can also be done by filling

in a few fields (Figure 4.7). The screenshot also shows custom local metadata from CERN. Once

endorsed, the VMIC will export an RDF file which lists all the endorsed images (Figure 4.8) which

can then be used by other VMICs to import the catalog.

19

Figure 4.3: VMIC Edit Endorser

Figure 4.4: VMIC Import via Command Line

Figure 4.5: VMIC Import via Web Interface

20

Figure 4.6: VMIC Get image via Web Interface

21

Figure 4.7: VMIC Edit VMI

22

Figure 4.8: VMIC Export RDF File

23

Chapter 5

Conclusions and Discussion

5.1 Answering the Research Questions

In conclusion, this research shows how to distribute and trust images between cloud providers

by building chains of trust between image producers, endorsers, and cloud providers. Our new

changes have been added to the Virtual Machine Image Catalog in place at CERN and Clemson

University and will continue to be developed. We hope to see more cloud providers implementing

VMIC to encourage expansion of this research.

5.2 Recommendations for Further Research

This research may be directly furthered by the investigation of exporting the list of trusted

endorsers and implications that can be caused by long chains. Research in the general area of Virtual

Machine Image Catalogs may also wish to look at faster internal and external distribution methods.

24

Bibliography

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A view of
cloud computing. Commun. ACM, 53:50–58, April 2010.

[2] E. Bertino, E. Ferrari, and A. Squicciarini. Trust negotiations: concepts, systems, and lan-
guages. Computing in Science Engineering, 06(4):27 – 34, 2004.

[3] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.
Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Gener. Comput. Syst., 25:599–616, June 2009.

[4] Mihai Christodorescu, Reiner Sailer, Douglas Lee Schales, Daniele Sgandurra, and Diego Zam-
boni. Cloud security is not (just) virtualization security: a short paper. In Proceedings of the
2009 ACM workshop on Cloud computing security, CCSW ’09, pages 97–102, New York, NY,
USA, 2009. ACM.

[5] W. Cronon. Nature’s metropolis: Chicago and the Great West. W.W. Norton, 1992.

[6] Django. Django documentation. http://docs.djangoproject.com/en/1.2/, 2011.

[7] Django. Django tutorial. http://docs.djangoproject.com/en/1.2/intro/tutorial01/, 2011.

[8] Graham Dumpleton. modwsgi. http://www.modwsgi.org/, 2011.

[9] R.J. Figueiredo, P.A. Dinda, and J.A.B. Fortes. A case for grid computing on virtual machines.
In Distributed Computing Systems, 2003. Proceedings. 23rd International Conference on, pages
550 – 559, May 2003.

[10] I. Foster. The anatomy of the grid: enabling scalable virtual organizations. In Cluster Com-
puting and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pages
6 –7, 2001.

[11] I. Foster, Yong Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-degree
compared. In Grid Computing Environments Workshop, 2008. GCE ’08, pages 1 –10, 2008.

[12] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infrastructure. The
Grid2; 2nd ed. Morgan and Kaufmann, San Francisco, CA, 2004.

[13] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. Int. J. High Perform. Comput. Appl., 15:200–222, August 2001.

[14] Simson Garfinkel. Pretty good privacy (pgp). In Encyclopedia of Computer Science, pages
1421–1422. John Wiley and Sons Ltd., Chichester, UK, 2003.

[15] Google. Google app engine. http://code.google.com/appengine/, 2011.

25

[16] Internet2. Shibboleth. http://shibboleth.internet2.edu/, 2011.

[17] Huan Liu and D. Orban. Gridbatch: Cloud computing for large-scale data-intensive batch
applications. In Cluster Computing and the Grid, 2008. CCGRID ’08. 8th IEEE International
Symposium on, pages 295 –305, May 2008.

[18] Michael Murphy, Linton Abraham, Michael Fenn, and Sebastien Goasguen. Autonomic clouds
on the grid. Journal of Grid Computing, 8:1–18, 2010. 10.1007/s10723-009-9142-3.

[19] All Buttons Pressed. djangoappengine. http://www.allbuttonspressed.com/projects/djangoappengine,
2011.

[20] Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakumar, Trent Jaeger, and Patrick Mc-
Daniel. Seeding clouds with trust anchors. In Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, CCSW ’10, pages 43–46, New York, NY, USA, 2010. ACM.

[21] SIGSAC. Ccsw 2011: The acm cloud computing security workshop.
http://crypto.cs.stonybrook.edu/ccsw11/, 2011.

[22] Borja Sotomayor, Kate Keahey, and Ian Foster. Combining batch execution and leasing using
virtual machines. In Proceedings of the 17th international symposium on High performance
distributed computing, HPDC ’08, pages 87–96, New York, NY, USA, 2008. ACM.

[23] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, David Molnar, Dag Osvik,
and Benne de Weger. Short chosen-prefix collisions for md5 and the creation of a rogue ca cer-
tificate. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture
Notes in Computer Science, pages 55–69. Springer Berlin / Heidelberg, 2009. 10.1007/978-3-
642-03356-8 4.

[24] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing i/o devices on
vmware workstation’s hosted virtual machine monitor. In Proceedings of the General Track:
2002 USENIX Annual Technical Conference, pages 1–14, Berkeley, CA, USA, 2001. USENIX
Association.

[25] S. Toyoshima, S. Yamaguchi, and M. Oguchi. Storage access optimization with virtual machine
migration and basic performance analysis of amazon ec2. In Advanced Information Networking
and Applications Workshops (WAINA), 2010 IEEE 24th International Conference on, pages
905 –910, 2010.

[26] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash functions
md4, md5, haval-128 and ripemd. Cryptology ePrint Archive, Report 2004/199, 2004. http:

//eprint.iacr.org/.

[27] Romain Wartel, Tony Cass, Belmiro Moreira, Ewan Roche, Manuel Guijarro, Sebastien Goas-
guen, and Ulrich Schwickerath. Image distribution mechanisms in large scale cloud providers.
Cloud Computing Technology and Science, IEEE International Conference on, 0:112–117, 2010.

[28] Jinpeng Wei, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, and Peng Ning. Managing security
of virtual machine images in a cloud environment. In Proceedings of the 2009 ACM workshop
on Cloud computing security, CCSW ’09, pages 91–96, New York, NY, USA, 2009. ACM.

[29] WSGI. Wsgi. http://wsgi.org/wsgi/, 2011.

[30] R.W. Younglove. Public key infrastructure. how it works. Computing Control Engineering
Journal, 12(2):99 –102, April 2001.

26

http://eprint.iacr.org/
http://eprint.iacr.org/

	Title Page
	Abstract
	Acknowledgments
	List of Figures
	List of Listings
	Introduction
	Grid Computing vs Cloud Computing
	VMIC Principles
	Motivation for VMIC Sharing
	Contributions
	Thesis Organization

	Related Work
	Grid Computing
	Cloud Computing
	Virtual Machines
	Use of Virtual Machines in the Grid
	Use of Virtual Machines in the Cloud
	Security Concerns with Virtual Machines

	Background and Technology Used
	Django
	Django with Apache
	Django with Google AppEngine
	Shibboleth

	VMIC
	Functionality
	Internal VMIC
	VMI Staging
	External VMIC Issues
	External VMIC Proposed Solution
	Trust Negotiation
	VMIC Prototype Implementation

	Conclusions and Discussion
	Answering the Research Questions
	Recommendations for Further Research

	Bibliography

